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ABSTRACT 

 

This paper presents the results of an investigation to study the distribution of sawdust particles in 

air during sawing/cutting operations in sawmill and its cluster formation and dispersion events. The 

main features of the proposed algorithm are: integrate the attractive features of logistic equation, 

Lyapunov exponent estimation and diffusive characteristic exponent in a chaotic walk in 3 different 

Euclidean spaces. The logistic equation control parameters ensured chaotic solution in a range, which 

was used to select next direction and next step size for the walk while simultaneously keeping record 

of distance traveled after the elapsed time step. The diffusive characteristic exponent of the average 

distance traveled was estimated for all parameters and linked to Lyapunov exponent to provide 

evidence of chaoticness or otherwise. Results yielded 9.73% of the control parameter leading to 

chaoticness while the super dispersive characteristic exponents for all the cases lies between 0.754 and 

1.026 with the lower limit greater than 0.5 supported by literature for random walk. It was shown that 

super-diffusive characteristic exponent supplements and contains chaotic behavior of sawdust particles 

in sawmill environments. The study helps to understand the pattern of movement of inhaled sawdust 

particles by sawmill workers so as to remove the effects of toxicity on the body. It is an improvement 

on previous literature report which was limited to radius elimination method. 
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1. INTRODUCTION 
 

In the last few years, there has been regular and intensive research on different aspects of sawdust 

utilization (Akira et al., 2002); (Ansari and Raofie, 2006); (Jadhav and Vanjara, 2004); (Sciban et al., 

2006). However, relatively few articles exist on health impacts of sawdust, particularly in sawmills. 

Akira et al. (2002) used sawdust as a new base material for boilers. Ansari and Raofie (2006) used 

sawdust coated with polyaniline. Batzias and Sidiras (2004) used sawdust for investigation on batch 

and column kinetics of methylene blue and red basic 22 adsorption on CaCl2. The same authors 

extended the study by considering prehydrolysis as a substitute to CaCl2 and still used sawdust as the 

removal agent. Gong et al. (2009) used sawdust in a functionalisation arrangement by monosodium 

glutamate for improving its cationic sorption capacity. These studies bring an understanding of how to 

convert sawdust wastes into useful materials for chemical experiments. However, this line of research 

is quite different from the goal of the current work, which focuses on health impacts of sawdust.  

More interestingly, another direction of research quantified the health hazards and abnormalities 

of exposures to sawdust. This has been documented as work related diseases such as asthma (Arif et 

al., 2003), childhood cancer in the offspring of male sawmill workers occupationally exposed to 

chlorophenate fungicides (Heacock et al., 2000), etc. Now, having considered these two groups, viz, 

studies concerning sawdust utilization and hazard investigations, it seems that there is a growing 
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recognition and call for more research towards solving the health impacts of sawdust on humans than 

its utilization. Arising from research on health impacts of sawdust is a new and exciting research that 

focuses on movements of sawdust particles as it affects inhalation by sawmill workers during 

operation at sawmills. This is aimed at controlling sawdust toxicity and its effects on humans. Salau 

and Oke (2010) called for possible investigation that improves on the radius elimination method of 

Feder (1988) and Zmeskel et al. (2001), which were applied in their work. Arising from this is the 

need for the present investigation, which improves on the existing literature on the subject, thus 

bringing up a better understanding of some hidden facts about formation and dispersion of sawdust 

particles during operations at sawmills. 

Further understanding of the problem being solved in the current work would necessitate 

exploring previous studies on chaotic models, which are relevant to the work. In addition, knowledge 

of the literature on logistic equation, Lyapunov exponent and dispersive characteristics exponents is 

necessary in order to properly position the current paper. Chaotic models, which may include fractal-

based theoretical formulations on the estimation of chaotic behavior through fractional dimension 

using radius elimination method of Feder (1988) and Zmeskel et al. (2001), are particularly suited for 

simulation of formative and dispersive behaviour of sawdust particles during operation in a sawmill. 

Understanding this has been a useful guide in the knowledge of distribution of sawdust particles 

inhaled by sawdust workers so as to remove the effects of toxicity on their body quickly (Salau and 

Oke, 2010). The use of fractional dimension based on radius elimination method which has been 

formulated and applied in previous studies (Feder, 1988); (Zmeskal et al., 2001), (Salau and Oke, 

2010) is with pros and cons.  

Noteworthy among the pros are: the model is simple in implementation, requiring no complex or 

sophisticated approach in model analysis and validation exercises. Thus, very little training is required 

for those who will utilize the model, as independence in its implementation is most obvious. On the 

other side, the cons involve losing the incorporation of important model parameters which may make 

the model more robust since simplicity of model is desired. Also, many assumptions may be made for 

the model to be applicable. However, the integrated logistic -Lyapunov-dispersive model is also with 

its pros and cons. Notable pros for the model include a strong base that incorporates many features that 

are missing in the fractional dimension model. One of the cons is that due to the more complex nature 

of the model, more time, training and skill are needed to master the implementation procedure. In the 

following paragraph, we present some literature information on logistic models. 

The logistic model has been widely applied in stability and permanence studies of physical 

systems (Jiang et al., 2008); (Li et al., 2007), microbial growth (Peleg et al., 2007), single-species 

populations (Sakanoue, 2007), disaster response activities  (Yi and Ozdamar, 2007), and in studying 

chaotic situations (Sen and Mukherjee, 2007). The literature also has an extensive documentation on 

the various aspects of logistics model that have been improved over years. These include extensions to 

logistic model by considering the error growth (Sancho, 2008), delay properties (Li, 2008), (Lisena 

2008), Yang and Yuan (2008), Cui and Li (2007) and periodic nature of logistic model (Lisena, 2007). 

Numerical methods have also been applied to logistic equations (Afrouzi et al., 2007a,b), non-linear 

analysis has also been aused (Dong and Liu, 2007), fractional order (El-Sayed et al., 2007), analytical 

solution (Thornley et al., 2007) and differential equations (Yuan, 2007).  Other studies that relate to 

this work include randomness (Aquion et al., 2001), chaotic diffusion (Kolovsky, 1997) and dynamic 

chaos (Shyy, 1991). Several investigations have been carried out on logistic equation with a view to 

capturing the behaviour of a number of functions. Afrouzi et al. (2007a) considered a reaction-

diffusion equation, 

 

          u (x) + au (x)
2 – ch (x) = 0          (1) 

 

with Dirichlet boundary condition. This paper has not demonstrated the possibility of integrating the 

three functions (i.e. logistic equation, Lyaponor exponent and diffusive equation) to improve on the 

performance of the integrated model. In another paper, Afrouzi et al. (2007b) proposed a variant of the 

earlier model using a numerical method based on sub-super solution in which the previous equation is 

reduced to au-bu
2
. Also, no form of integration has been proposed by Afrouzi et al. (2007b). 

Apart from the literature documentation by Feder (1988) and Zmeskel et al.(2001), which the 

current work compares itself with, there is a growing literature that either studied the problem using 
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radius disk elimination method or utilized random walk principles in the solution approach to a similar 

problem. The case of Salau and Oke (2010) that addressed sawdust movement problem using radius 

elimination method has earlier been mentioned. However, a complementary article relates to the work 

of Alabi et al.(2000) that reported correlation properties in English scientific text by means of a 

random walk, which is related to the principles adopted in the final phase of the model formulation in 

this work. Alabi et al. (2008) utilized random walk principles to judge the quality of engineering write 

ups based on the average distance of a number of random walk from a starting point. These two 

streams of research only complement the efforts in the literature but have not addressed the problem 

solved in the current work. 

The primary objective of this paper is to demonstrate that, when properly integrated, the 

combination of logistic equation, Lyapunov exponent and the diffusive characteristics exponents can 

be shown to be a solution to the dispersion mode-capture problem of sawdust movement in a sawmill. 

The compatibility of the three algorithms, that is logistic equation with spread characteristics, the 

Lyapunov exponent which is taken as a function of the logistic equation, and the power low attribute 

of the diffusive characteristic exponent, improves the overall efficiency of the simulations, since all 

these models are linked to one another and the attributes shared. 

The structure of the article is as follows. The introduction provided a strong motivation for the 

study and a justification for the study through an adequate review of the literature to demonstrate gap 

that is available in the literature and one that the current paper fills. Section 2 presents the material and 

methods, containing the mathematical framework for the study. This started with the declaration of the 

logistic model and progressed to show how it could be integrated with the Lyapunov exponent. 

Further, it showed how dispersive exponent could be integrated to the frame work. Section 3 presents 

the results and analysis to demonstrate the trend in the analysis. Section 4 is the discussion. In section 

5, the concluding remarks are given. 

 

2. MATERIAL AND METHODS  
 

2.1 Problem description 
      

The problem is formulated with due consideration to sawdust behavioral pattern, which is similar 

to the behavior of particles suspended in air, traveling around space in normal day-to-day activities 

(Fig. 1). Consider two sawdust particles A and A’ that are emitted from the cutting machine during the 

sawing operation of logs of wood in a sawmill. These sawdust particles walk around in 1-D, 2-D and 

3-D Euclidean spaces according to any or a combination of walk patterns such as random, stochastic, 

chaotic. Thus, we may have several combinations of walk behaviours, which may bring in some 

complex analysis. Therefore, as a research strategy, we focus on random and chaotic walk patterns so 

as to illustrate the methodology proposed in this article. Thus, from the sawdust particles A and A’ 
mentioned above, particle A may be governed by a walk pattern described by pure randomness that 

obeys uniform distribution. It means that if a large sample is collected and analyzed, the result will 

reveal that a small sample percentage of the population would be to the left and right hand sides of the 

normal distribution curve, while a high percentage would be recorded for large samples, which fall in 

between these two extremes. This walk pattern of particle A is different from that of sawdust particle 

A’.  
For the latter, the walk pattern is governed by chaotic distribution, which may be obtainable from 

the solution of logistic equation. Notice that sawdust particles A and A’ are alike in all respect except 

that the walks that drive them are different. The objective is to evaluate them for walk performance 

between two points at known distance apart. Thus, the walks have been established to be driven by 

distributions (uniform and chaotic). A major difference between sawdust particles A and A’ is the 

driving force, determined by the distribution that propels them in the Euclidean spaces. The exponent 

in this article reveals how fast large number of sawdust particles A and A’ are spreading around in 

Euclidean space with elapse of time. The higher the exponent, the faster the spread rate and vice-versa. 

This spread action is analogical to the dispersion concept from which the study obtains a keyword 

utilized in its title. Note that it takes time for bad odor to spread through space. Similarly, the walk 

pattern of the sawdust is governed by the same principle. Lyapunov exponent is a mathematical tool 
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for knowing whether or not a set of solutions obtained from logistic model is chaotic. The test is 

essential as a driving force for sawdust particle A’. 
 

 

Figure 1. Sawdust particles, source (wood smoothening machine) 

and the sawmill environment 

 

2.2 Assumptions 

      

There is a number of assumptions guiding the use of the model. The first assumption relates to the 

weather conditions. The motion of sawdust particles is obviously affected by humidity in the 

surrounding environment where the sawmill is situated. The speed of movement of sawdust particles is 

also affected by the direction and intensity of wind. If wind blows in direction opposite to the direction 

of the initial movement of the affected particles, the particle speed is retarded and may consequently 

change direction to the opposite or some other directions depending on the magnitude and direction of 

the wind. The second assumption relates to the dryness or otherwise of the timber to be sawn. A dried 

timber produces sawdust that is emitted at high speed from the high feed and cutting rates of the band 

saw. If the timber is relatively wet, the amount and sizes of sawdust particles are affected; more 

weighty sawdust particles will be sawn. The third assumption relates to the conditions of the cutting 

tools. Blunt tools produce less cutting force and consequently less quantity of sawdust may be 

produced. In practice, although produced from similar shapes, the sawdust particles are not perfectly 

alike. Also their surface areas and weights vary. However, for ease of modelling and computation, 

these shapes are taken to be the same, which is the fourth assumption. The environment that the study 

is assumed to have carried out is the dry season in Nigeria. It is acknowledged that different 

observations in results may be obtained when condition of very cold (snow period) season such as in 

cold regions of Scotland and Canada, among others, is considered. The depth of cut of timber, cutting 

speed, type and the amount of lubricants applied during the wood cutting process are strongly 

influenced by the skill and experience of the machine operator. Thus, the fifth assumption is that an 

operator of average experience should be hired so that the deviation of the results from normal would 

be minimal. 

 

2.3 Mathematical framework 

 
The framework upon which the current paper is built is the integration of three models: Logistic 

equation (LE), the Lyapunov exponent and the diffusive characterizing exponent (DC). The integrated 

model may be conveniently referred to as the LE-LY-DC model and has shared attributes of the 

respective components. The formulation of the model, which starts from the logistic equation 

framework, could be used to understand the spread of sawdust particles dispersed from the machine 

source into the sawmill environment. Borrowed from the literature, the expression for the logistic 

equation relevant to the current study includes: 

  

Xn+1= K*Xn*(1.0-Xn)                                         (2) 

 

where Xn+1 is the normalized population of workers in the sawmill who are exposed to the sawdust 

dispersion effect at time n+1. Xn is the normalized population of workers in the sawmill who are 
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exposed to the sawdust dispersion effect at time n. K is the level of spread control put in place. For K, 

for instance, the proper ventilation may discourage excessive inhalation by the sawdust worker. Others 

may utilize fan to blow the spreading sawdust. If K is high, it implies that the control is effective and 

desirable. K may therefore be calculated based on the level of sophistication of control put in place in 

terms of protection of human exposed parts to the inhalation of sawdust. Eye, nose, mouth and skin are 

contact areas. Gadgets meant for the protection of these body parts increase the level of control. Thus, 

K may be evaluated in an increasing function and for practical purposes it is taken as being varied 

between 0.001 and 3.999 in constant step of 0.001. K is an indicator of control strength of the sawdust 

particle. For value of K outside the range 0 to 3.999, the solution of logistic model equation (3) will 

grow without bound and this is totally unwanted in the current study. The solution is expected to be 

bouncing around within around definite limits. Specifically the solution is to be bound between 

minimum of zero and maximum of 1. However, the distribution of the solution can be fixed, periodic 

or chaotic behaviour, but never random behaviour. The chaotic solution is what the present study 

utilizes to drive the sawdust particle that is marked A’ in the Euclidean space. For the same reason, we 
employed Lyapunov tool to make a pass or fail test for the solution generated for specified K-value. A 

pass implies the solutions obtained at K-value specified is chaotic and fail, if otherwise. The constant 

step of 0.001 is to ensure thorough check for all K-values between the 0 and 3.999 limits that lead to 

chaotic solution. 

Since the sawmill is assumed to be in operation and the sawmill workers must have worked for a 

period of time before this study is carried out to test the system parameters, the initial normalized 

population of sawmill workers affected by the sawdust dispersion and inhalation problem, X0 used for 

all cases studied is 0.3. This is similar to the fractional man problem in manufacturing studies. The 

interpretation is that if it is assumed that a 100% affected population shows signs of reaction to the 

side effects of sawdust inhalation, 33.33% progress in inhalation has been made and with 66.70% 

additional period with constant level of activities in the sawmill, the current population would be 

matured to show signs of reaction or side effects. 

Recall that having defined equation (2) for the logistic equation, the next step is to define 

equations for the Lyapunov exponent and the dispersion characterizing exponent and show how they 

are integrated. However, before doing this, we define variants of equation (2) as defined by other 

authors so that comparison could be made for the purpose of validating the model. These are defined 

in the next set of models. The first variant of the logistic model was proposed by Afrouzi et al. 

(2007a), who defined the logistic model as:  

 

Xn+1= K* (1.0-Xn)                                                                      (3) 

 

Notice that in comparison with our model stated in equation (2), Xn, which is a second coefficient 

of the terms in bracket eliminated. The definitions for Xn+1 , K and Xn still holds as for the previous 

definitions in equation (2). We further progressed by comparing the second variant of equation (2) 

with the original equation (2) established above. This second variant is stated by Afrouzi et al. (2007a) 

from the previous work quoted as:   

 

Xn+1 = ΔK * Xn + 1.0 * K * Xn + 1.0 * K * 
2
nX  – 1.0 * Xn         (4) 

 

With the same definition of terms as stated earlier, the additional term not earlier defined, ΔK, 
means an increment in the value of K, i.e. 0.001. There is a third variant of the logistic model, which 

was developed by Afrouzi et al. (2007a), which is stated as 

 

Xn+1= K*Xn + K*Xn + K*
2
nX                                                      (5) 

 

All the terms in equation (5) have been defined previously and are still the same. Furthermore, 

there is a fourth variant of the logistic model, as defined by Afronzi et al. (2007b). The framework is 

stated as:  

Xn+1= K*X
n 
- K*

2
nX                                                       (6) 
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The terms in equation (6) have also been defined previously. It should be re-emphasized that 

equation (2) is utilized in the work while equations (3) to (6) are variously combined with the LY-DC 

model combinations to obtain validity results with which comparison of obtained results could be 

made. Now, there is a need to progress on other equations which would be integrated with the logistic 

equations defined earlier. The Lyapunov exponent estimate is expressed in equation (7) and is used to 

estimate the Lyapunov exponent of logistic equation. Thus, irrespective of the form of the equation 

listed in equations (2) to (6), there is a common expression for Xn+1, which is the input for the 

Lyapunov exponent, stated as 

Lyapunov exponent = 






N

k dx

X ndf

NN 0

)1(
log2

1
lim        (7) 

  

Later, some study cases were established where N was bounded at 2000 to ensure reliability of the 

estimated Lyapunov estimate. The next advancement entails mathematically defining the behavior of 

the sawdust particles in Euclidean space, bearing in mind the possible chaotic walk of the sawdust 

particles and its dispersion characteristics. It thus means that parameters need to be defined and related 

to average distance moved by the sawdust particles from the woodworking machine that produces it. 

We then have equation (8):    

                           

TDav
             (8) 

    

Where Dav represents the average distance traveled away from the machine source of sawdust 

particles (datum) after a known elapsed time step, T. β refers to the dispersion characterizing exponent. 

It should be noted that 200 walks are accounted for in the study and the elapsed time step varies from 

1 to 2000 in constant increment of 1. 

 

3. RESULTS 
 

A Fortran program was developed, tested and implemented for the model developed in equations 

(2), (7) and (8) and the program was run on a Pentium based computer with a reasonable speed. The 

program was developed based on each of the 1-Dimension,2-Dimension and 3-Dimension Euclidean 

space investigation. The fourth platform was the shortest and it enables the results for the generation of 

figures 3 and 4 that are presented in the results section. The flow chart for the solution procedure    

(Fig. 1a, 1b and 2) shows a linkage of the logistic model, the Lyapunov exponent and the dispersion 

characterizing exponent. In developing codes for the logistic model, its conceptualization as a dynamic 

system was made. As a dynamic system, it exhibits three levels of solutions: initial, transition and 

steady. This is similar to the dynamic attribute of an aero-plane with the same three levels representing 

a run-off, taking off into air and stabilizing for a very long journey. Thus, referring to the flow chart 

(Fig.1a), the content of the second rectangular box represents the initial solution. 

For the transition solutions, the content of the fourth rectangular box (Fig. 1a) reflects this. Inside 

this box, the logistic model is solved iteratively in “1tr”times. The content of the sixth rectangular box 
(Fig.1a) presents this iteratively until (J=Nstep) condition is met. This represents the second 

appearance of the logistic model. Lyapunov exponent is computed iteratively in this box through the 

seventh rectangular box. The final average Lyapunov exponent is computed in the first rectangular box 

in Fig. 1b. Notice that the third rectangular box in figure 1b is for initiation of chaotic walks depending 

on whether we are investigating on 1-D, 2-D or 3-D. The one indicated on the flow chart is 

specifically for two dimensions (2-D). The fourth rectangle in Fig. 1b computes more steady solutions 

of logistic model iteratively and uses the results constructively for chaotic walks in 1-D, 2-D or 3-D. as 

the case may be. The fifth rectangle in fig. 1b calls the subroutine in Fig. 2 for Dm and Cm 

computation, which represents the characterizing exponent while Cm is the intercept. Finally, the 

results of the investigation are written into files 2 and 3 according to format (65). Notice that the 

procedure is repeated for the next KKK until KKK=Nend. In the nomenclature are defined the 

meanings of the various terms utilized in the program. 
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No 

Yes 

SumLyExp = 0.00 

Xmin = XX 

Xmax = XX 

Cexpt = 1.0/Log (2.0) 

Ic = 0 

J = 0 

J = J + 1 

XX = Rate*XX*(1.0-XX) 

Compare Xmin and Xmax with 

XX and update if necessary 

Expt = abs (Rate(1.0-2.0*XX) 

Is Expt≠0 ? 

Itr? 

1 

Read data on movement 

directions, step, Nbg, Nend, Itr, 

Nstep, Nwalkers, Iseed 

RR = 0.3 

KKK = Nbg 

Rate = Float (KKK)*step 

XX = RR 

i = 0 

i = i + 1 

XX = Rate * XX * (1.0 – XX) 

2 

No 

No 

Start 

i = Itr? 

Sum Ly Exp = Sum Ly Exp + Log (Expt) * (expt) 

J = Nstep 

Yes 

 

Figure 1a. Flow chart of computation of model results 
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Write (2,65) Rate, Dm,Rate,Cm 

Write (3,65) Rate, SumLyExp, Dm 

3 

Yes 

No 

1 

i = 0; Fact = 1.0/Float (Nwalkers) 

)cFloat(I

SumLyExp
SumLyExp ; minXmaxXrangeX   

Subdivide equally and label rangeX value into 2, 4 and 6 parts respectively 

for 1-D, 2-D and 3-D 

Is SumLyapunov 

greater than 0? 

i = i + 1; X = 0.0; Y = 0.0; K = 0 

2 

No 

Yes 

 

 K = K + 1; XX = Rate * XX * (1.0 – XX) 

 Use XX relative location on the subdivided X range to determine the 

direction of next chaotic move among possibilities 

 Compute new location; Compute distance of new location relative to datum 

KKK = Nend? KKK = KKK + 1 

Stop 

Figure 1b. Flow chart of computation of model results  

(extended part) 
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For the solutions described for K in section 2.3, the choice of directions is governed by: 

 

1-D Euclidean Space: 

(1) Move a step (size picked randomly from 0 to 1.0) to the right if solution is 0 0.5s   

(2) Move a step (size picked randomly from 0 to 1.0) to the left if solution is 0.5 1.0s   

2-D Euclidean Space 

(1) Move a step (size picked randomly from 0 to 1.0) to the North if solution is 0 0.25s   

(2) Move a step (size picked randomly from 0 to 1.0) to the South if solution is 0.25 0.5s   

(3) Move a step (size picked randomly from 0 to 1.0) to the East if solution is 0.5 0.75s    

(4) Move a step (size picked randomly from 0 to 1.0) to the West if solution is 0.75 1.0s   

 

 

Yes 

No 

Ipt = Nsteps 

I = 0 

Sumx = 0 

Sumy = 0 

i = i + 1 

Sumx = Sumx + log [float(i)] 

Sumy = Sumy + log [Dmean(i)] 

i = Ipt? 

No 

Dm = Sumxy/Sumxx 

Cm = ym – Xm*Dm 

i = Ipt 

Yes 

Figure 2. Flow chart of subroutine Ratte 

Stop 

3 

i = i + 1 

Sumxx = Sumxx + [float(i) – Xm]**2 

Sumxy = Sumxy + [float(i) – Xm]*[Log(Dmean(i)-ym] 

Dmean(i) = 0.0 

3 

Xm = Sumx /Float (Ipt) 

Ym = Sumy /Float (Ipt) 

Sumxx = 0.0 

Sumxy = 0.0 

i = 0 

Start 



 Wood, Design & Technology, Vol.3, No.1,(2014):24-40 
___________________________________________________________________________________________________________________________________________ 

 

33 

 

3-D Euclidean Space 

(1) Move a step (size picked randomly from 0 to 1.0) to the North if solution is 0 0.167s   

(2) Move a step (size picked randomly from 0 to 1.0) to the South if solution is 

0.167 0.334s    

(3) Move a step (size picked randomly from 0 to 1.0) to the East if solution is 0.334 0.501s   

(4) Move a step (size picked randomly from 0 to 1.0) to the West if solution is 0.501 0.608s   

(5) Move a step (size picked randomly from 0 to 1.0) to the Toward Roof if solution is 

0.608 0.775s   

(6) Move a step (size picked randomly from 0 to 1.0) to the Toward Floor if solution is 

0.775 1.0s   

Where‘s’ is the same as sequence of chaotic solutions (Xn) obtained solving equation (3) in the 

paper. The results obtained from running the program of which the flow charts were earlier displayed 

are presented in this section. Primarily, the behavioral pattern of 500 consecutive steps of a random 

walk in 2-Dimension is graphically displayed (Fig. 3). 

 

 

Figure 3. 500-Consecutive Steps of a Random Walker in 2-Dimension 

 

In Fig. 4, the sawdust particles movement behavioral pattern was demonstrated with 500 

consecutive steps of a chaotic walk in 2-dimensions. 

 

 

Figure 4. 500-Consecutive Steps of a Chaotic Walker in 2-Dimension 
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Table 1 shows the combined information on simulation concerning control parameters, Lyapunov 

exponents and dispersion characteristics. It should be noted that Table 1 shows an extract of less than 

10% of the sampled cases results. The remaining 90% results are not chaotic and therefore not relevant 

to this study. The table can serve reference purposes as literature reports on chaotic behavior of 

Logistic equation are often presented in graphic. 

 

Table 1. Control parameters, Lyapunov exponents and diffusive characteristics exponents 

Control 

parameters with 

chaotic solution 

Corresponding 

estimated 

Lyapunov 

exponents 

Diffusive characteristic exponents of chaotic walkers 

average distance travelled reference a datum after a 

given elapsed time steps in 3-different Euclidean 

spaces 

1-Dimension 2-Dimension 3-Dimension 

3.570 0.003 0.984 0.993 0.994 

3.571 0.015 0.985 0.993 0.994 

3.572 0.016 0.985 0.993 0.994 

3.573 0.018 0.985 0.993 0.994 

3.574 0.024 0.989 0.993 0.993 

3.575 0.030 0.987 0.993 0.994 

3.576 0.030 0.987 0.993 0.993 

3.577 0.032 0.987 0.993 0.994 

3.578 0.028 0.981 0.993 0.991 

3.579 0.035 0.981 0.993 0.992 

3.580 0.038 0.981 0.992 0.990 

3.581 0.035 0.981 0.992 0.990 

3.582 0.021 0.982 0.992 0.989 

3.584 0.033 0.982 0.993 0.988 

3.585 0.042 0.982 0.992 0.989 

3.586 0.042 0.982 0.992 0.989 

3.587 0.045 0.981 0.992 0.989 

3.588 0.048 0.982 0.992 0.989 

3.589 0.048 0.982 0.992 0.990 

3.590 0.049 0.982 0.992 0.989 

3.591 0.054 0.982 0.992 0.990 

… … … … … 

3.990 0.223 1.000 0.988 0.972 

3.991 0.219 0.996 0.997 0.975 

3.992 0.219 0.998 0.996 0.975 

3.993 0.221 1.000 0.992 0.971 

3.994 0.228 0.998 0.996 0.981 

3.995 0.228 0.995 0.991 0.978 

3.996 0.229 0.995 0.999 0.973 

3.997 0.231 0.993 0.997 0.983 

3.998 0.233 0.998 1.002 0.981 

3.999 0.236 0.998 0.996 0.965 

Range of  characteristic exponents in 

Euclidean spaces 
0.981 to 1.022 0.810 to 1.021 0.754 to 1.026 
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Furthermore, Fig. 5 shows the relationship between the control parameters and characteristic 

exponents using 1-Dimensional data. A trend line is also fitted to understand the variation of the data 

points from the line. 

 

 

Figure 5. Control Parameters versus Characteristic Exponents (1-Dimension) 

 

Fig. 6 shows the relationship between the control parameters and characteristic exponent in 2 

dimensions 

 

 

 

Figure 6. Control Parameters versus Characteristic Exponents (2-Dimension) 

 

In Fig. 7, a relationship between control parameters and characteristic exponent in 3-dimension is 

sought. 
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   Figure 7. Control Parameters versus Characteristic Exponents (3-Dimension) 

 

The step size can be fixed value (1.0) or picked randomly between 0 and 1.0 as explained above. 

The corresponding   values obtained from invoking equation (8) on particle A’ for all K-values that 

lead to chaotic solutions are contained in Fig. 5, 6 and 7. Fig. 5 is the results obtained for particle A’ in 
1-D Euclidean space as explained above. Fig. 6 is the results obtained for particle A’ in 2-D Euclidean 

space as explained above. Fig. 7 is the results obtained for particle A’ in 3-D Euclidean space as 

explained above. We have explained the practical value of   for low and high values. Higher   

signify fast diffusion in the studied space and vice versa for lower  . 

 

4. DISCUSSIONS 
 

4.1 General 
 

Remember that an important objective of the work is for the model developed to be able to track 

chaos in the movement of sawdust particles or show an otherwise behavior. The basic idea is that the 

model is tested for particle movement in 1-D, 2-D and 3-D directions. One dimension (1-D) visualizes 

the sawdust particle to be moving in a plane in which a forward movement is allowed. This is not a 

chaotic situation since no backward and side way movements are allowed. Two dimensional (2-D) 

movements involve front and side motion of the sawdust particles. Three dimensional (3-D) 

movements of the sawdust particles involve front movement, a reverse movement (back) and a side 

movement of the sawdust particles. This is largely chaotic in nature.  

If the movement of the sawdust particle is chaotic, this may have been influenced by the wind 

effect on the sawdust particle and its direction, gravitational force on the sawdust particles and the 

buoyancy effect on sawdust particles. In simulating the behavior of sawdust particles, fig. 3 was 

obtained using random number generator algorithm, (ran(seed)). The seed value used was 9876 and 

the first 100 values returned were taken to be the run-off. It can be observed that the solution almost 

filled up the plane defined by 1 unit. This has been represented by 500-consecutive steps of a random 

walk in 2-dimensions. Fig. 4 shows a chaotic behavior of the sawdust particles in 500-consecutive 

steps. 

Referring to Table 1, only 389 out of 3999 sampled control parameter points lead to chaotic 

solution. Thus, about 9.73% of the control parameter range exhibit chaoticness. Furthermore and 

referring to Table 1, the listed Logistic equation controls parameters in the range of 3.570 to 3.999 

leads to chaotic solution.  This is evident from the respective positive Lyapunov exponents. 

Furthermore the range of the characteristic exponents increases with increasing space dimension. The 

highest 0.754 to 1.026 was recorded for 3-dimensional Euclidean space. None of the diffusive 
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characteristic exponents obtained is lower than or equal to 0.5 supported by literature for diffusive 

characteristic exponent of a Random Walk in any Euclidean space. Referring to Fig. 5, there is very 

little correlation between the variation of the control parameters and the corresponding chaotic walk 

characterization exponents. The correlation coefficient is low (R
2
=0.3525). Referring to Fig. 6 there is 

very little correlation between the variation of the control parameters and the corresponding chaotic 

walk characterization exponents. The correlation coefficient is low (R
2
=0.0664). 

Furthermore the characterization exponents are almost the same for all the parameters except for 

some parameters in the neighborhood of parameter 3.679. Referring to Fig. 7, there is very little 

correlation between the variation of the control parameters and the corresponding chaotic Walk 

characterization exponents. The correlation coefficient is low (R
2
=0.0271). Furthermore the 

characterization exponents are almost the same for all the parameters except for some parameters in 

the neighborhood of parameter 3.685. For the problem encountered with constant step size, we state 

that the attempt made to reproduce table 1 and figures 3 to 5 for chaotic walker with constant step size 

failed, but specifically for some chaotic parameter points and only in 1-dimensional Euclidean space. 

The K-value of 3.571 in equation (1) was noted for this problem all other setting being equal. The 

explanation found was that the Dav in equation (3) for the 200-walks involved in this study sum to zero 

for all elapsed time steps that are even numbers. But zero argument is not acceptable for logarithm as 

required for the estimation of β in equation (3). 
 

4.2 Model verification results 

 
The model verification exercise, which entails, running the same program as done for the original 

equations (2), (7) and (8) when equation (4) is substituted for (2), yielded interesting results. This 

variant of analysis did not yield chaotic solution (i.e. for  ΔK=0.001 and K=0.001 to K=1.537 in step 

of 0.001); the average Lyapunov has to be positive for a chaotic solution to occur, but all computed 

average Lyapunov were negative. From K = 1.538 upward, the program used for the analysis 

encountered “math overflow error” which indicates non-feasible region of solution. Thus, the 

methodology has been used to differentiate a chaotic solution based equation from a non-chaotic one. 

Additional verification exercise was conducted with equation (5) substituted for (2), where equations 

(5), (7) and (8) now represents the framework to be verified. The same result was obtained compared 

with the model combination of equations (4), (7) and (8). The specific finding is that between K=0.001 

and K=0.434 (inclusive), no chaotic solution was formed. Beyond this range of values, “math overflow 
error” was observed, indicating non-feasible area of operation. 

 

4. CONCLUSIONS 
 

In this study, an approach has been presented that aids the understanding of how sawdust particles 

move about in the sawmill environment as a result of the cutting and sawing actions of the machine on 

wood. The study presented mathematical formulations with linkages from logistic equation to 

Lyapunov exponent and dispersion characterizing exponents. The model is then validated with 

variants of logistic models incorporated into the framework to demonstrate its ability to detect chaos or 

otherwise in any tested model. Existing literature values are also compared to the results obtained. 

This study showed that about 9.73% of the control parameter range sampled exhibit chaoticness. The 

study also showed that the dynamics of chaotic walker in any Euclidean space dimension is super-

diffusive. The minimum diffusive indicator recorded was 0.754. The study further showed that super-

diffusiveness evident as possible supplement confirmation of chaotic behavior of a dynamical system. 

In addition, table 1 can serve reference purposes, as literature reports on chaotic behavior of Logistic 

equation are often presented in graphic.  

There seems to be a wide variety of investigations that the success of the current paper could be 

extended to. An immediate application may be to other hazardous jobs such as cement bags loading 

and off-loading from vehicle in an enclosed warehouse where very little air circulation is permitted. 

Other related jobs where particles are emitted in activities could also benefit from the application of 

the study. In addition, it may find suitable application in iron and steel making where alloying of 

elements may be studied with respect to movement of elements during alloying process. Since the 

originality of the work lies in the application of a uniquely combined model framework with 
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components largely established in the computational field to a completely new setting with very 

limited applications, there is obviously a large set of models that could be adapted from literature to 

current work and then compared with the results presented here. From the literature cited, the diverse 

approaches could be incorporated into the existing framework and correlation analysis carried out. 

Thus, the new set of studies may emerge that would add value to literature in order to further our 

understanding of important aspects concerning sawdust particle movements in sawmill environment. 

 

Nomenclature  

 

n  time  

Xn  normalized population of sawmill workers that inhale sawdust particles 

Xn+1  normalized population of sawmill workers that inhale sawdust particles at time (n+1). 

K  level of sawdust spread control put in place 

f(Xn)  function of Xn 

Dav   average distance traveled away from the machine that cuts logs into planks  

T  elapsed time  

β      dispersive characteristic exponent  

N  number of cases considered  

X0   initial normalized population of sawmill workers that inhale sawdust particles at time 0. 

 

Definitions of variables used in the flowchart 
 

Step step at which parameter axis was investigated, value used for this study is 0.001 
Nbg beginning counter for investigation along parameter axis, value used for this 

study is one (1) 
Nend end counter for investigation along parameter axis, value used for this study is 

four thousand (4000) 
Itr end counter for computation of transition solution (100) 
Nstep total number of steps investigated for  chaotic walks (2000) 
Nwalkers total number of time that 2000-Nstep distinct steps was performed (200) 
Iseed seed value for random step size generation (9876 used) 
RR initial or starting solution of logistic model (0.3 used) 
Rate logistic model parameter (the same as product of float(kkk) and step). kkk takes 

value from Nbg to Nend at an increment of one (1) 
XX Rate*xx*(1.0-xx) 
SumLyExp Lyapunov Exponent 
Xmin minimum steady solution possible from the logistic model 
Xmax maximum steady solution possible from the logistic model 
Expt Abs(Rate*(1.0-2.0*xx)), Abs=absolute 
Xrange Difference between Xmax and Xmin 
X x-coordinate of chaotic walks 
Y y-coordinate of chaotic walks 
Z z-coordinate of chaotic walks 
Ratte Subroutine for computing the diffusive characteristic exponent and intercept 
Xm mean value of logarithm of scales (i.e. mean of 1 to 2000) 
Ym mean value of logarithm of average distance of 200 attempts at the end of each 

step in 2000-chaotic step (step size varies randomly) 
Dmean(i) average distance value  for i=1 to 2000 communicated to the subroutine by the 

main programme 
Dm characteristic exponent 
Cm Intercept 
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