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ABSTRACT

This paper shows the methodics and results of ithalative investigation of the circular saw
with compensating slots. The investigation is atemsion of the previous one done by the authors.
The natural frequencies and mode shapes of thi dfircircular saws are obtained as results of the
investigations. The estimation is done by applozatprogramme Cosmos Works. Physical and
mechanical properties of the materials are takém agcount. The adequate mechanic-mathematical
model is used for the aims of the study. The typateracteristics of the structure of this kind of
circular saws were taken into account in the moted circular saw is drawn in 3D by the application
programme Solid Works and it is modeled with foades 3D finite elements. The results of this
investigation prove the practical significance ¢fetmodel. They point the possibilities for
determinations of resonant regimes and they atis fiastheir detailed studying.
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1. INTRODUCTION

The current circular saws are made of high quali&gl with excellent mechanical characteristics.
Therefore, during their constructive formationsitpiossible to foresee slots which improve the vadrk
the saw. In addition, tungsten carbide teeth (TEAr) be included. They increase the wear resistance
at the cutting. They are soldered to the saw’s bloglyspecial technologies and they provide the
necessary reliability during its work, as well &g tguality of the product processing. An important
condition in the production of the circular sawséaching high accuracy of its designing shape and
measures. This condition requires usage of cufrante often laser) technologies for processing of
the tool. Usage of current materials and techne®@ a premise for making the circular saws which
have qualities that are necessary for the praclicese saws allow intensification of the work pss;e
using higher speed during cutting. This processdusintages but there are some problems. One of
them is the excessive heating of the saw duringvaisk. It can lead to deformations of the disk and
damage the accuracy and quality of the procesditigeoproduction. To avoid that, it is necessary to
make compensating slots in the saw’s body. A circglaw with compensating slots is shown in
Figure 1. The slots are formed in order to avoitbaeations, thus saving the high quality of the
cutting of the saw even in hard conditions (sigmifit centrifugal forces, heating caused by théidric
between the saw and the wood).

The existence of the compensating slots in thaulercsaw’s body influences the frequencies of
the natural vibrations and mode shapes of theleirsaw. This impacts the tasks of the designirdy an
measuring of the whole circular machine (Vukov, B¢ Slavov 2010), (Vukov, Georgieva 2009),
(Obreshkov, 1996). It is necessary to do beforetsmmie estimations of the danger of the resonance.
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Therefore, it's necessary to investigate the nafeeguencies and mode shapes of the circular kaw.

leads to simulative investigations which help diffdhe resonant regimes (Amirouche, 2006),
(Coutinho, 2010). They are done on the basis ofj@ate mechanic-mathematical model, taking into
account the typical characteristics of the striectand the physical-mechanical characteristics ef th
materials of this kind of circular saws (Veits, Koca, Martinenko, 1971), (Minchev, Grigorov,

1998), (Philipov, 1977).

Figure 1. Circular saw with
compensating slots

The aim of the study is to build an adequate mechamathematical model for investigation of
free vibrations of a kind of circular saws with qmemsating slots, concerning characteristics in its
structure. Some simulative investigations can bdaran this basis and these investigations can help
to define resonance regimes and to formulate seognements needed to avoid them.

2. MECHANIC-MATHEMATICAL MODEL OF CIRCULAR SAW WITH
COMPENSATING SLOTS

The circular saw with compensating slots, drawr3ih by the application programme Solid
Works (www.solidworks.coi is shown in the Figure 2.

Figure 3 shows the mesh of four node 3D finite elets, modeled by the application programme
Cosmos Works.

Figure 2. Circular saw with compensating dots, drawn in 3D
The investigation of the vibrations of the circulaaw with compensating slots requires

formulation and solution of the differential equeits which describe these processes. Therefore, the
matrix mechanics is used (Angelov, 2010), (Angeiiayvov, 2010).
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3. DIFFERENTIAL EQUATIONS

The differential equations which describe the frertinuous vibrations of the circular saw are

M.§+C.q=0, (1)
Where:
g= [0l1 Q- qn]T is the vector of the generalized coordinates; 2)

M — the matrix, which characterizes the mass-inigstigperties of the mechanical system;
C — the matrix, which characterizes the elastic prigs of the mechanical system.

ol name: Cirkubyar-2.2001
Stuchy name: Study 3
Mesh type: Scid mesh

Figure 3. The circular saw with compensating slots, modeled by the mesh of finite elements

The system of connected linear differential eaquretiis obtained when the vibrations are small.
Particular solutions of the system of the difféi@requations (1) are searched as:

g =h.sin(@t+g), 3
Where h, is the amplitude of the small vibration on the gmfized coordinateg, with natural
frequencyw, , and ¢ is initial phase.

After differentiation of (3) and substituting in)(1la system of linear algebraic equations is
obtained:

‘C—af.M‘.V=O. 4)

To determine the natural frequencies and the mbdpes, it is necessary to solve the task of
finding the natural values and the natural vectufrshe equations (4). A satisfactory result of the
equations (4) requires the following:

detlC-a?.M)=0. (5)

The roots of the characteristics equation deteritieenatural frequencies. The natural frequencies
form the matrix of the natural values. It is:

a)=diag[cu},rj, r=212.n. (6)
The natural frequencies are determined by (6):

f = g, )
2
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The natural values of the system (5) determinentitaral vectors. The modal matrix of the free
vibrations is determined by the equations (4) &)d (

Vi, Vi ooV,

V,, V. Y/
v=| ' V2 2n i=1l.m j=1n, (8)

V., V.

m2

.V

mn

where V;; are the unknown amplitudes of the nodes’ movingfrieg vibrations. The natural

frequencies and the mode shapes are determindeeldgnown matrix, which characterizes the mass-
inertial properties and the matrix that characesithe elastic properties of the mechanical system.

4, NUMERICAL INVESTIGATIONS

Numerical investigation is done by modeling of ackbf circular saws with compensating slots by
the finite elements method. Physical-mechanicafasttaristics of materials are taken into account —
they are shown in Tables 1, 2 and 3. The estimatidhe natural frequencies and mode shapes of the
circular saw is done by the application programroerios Works.

Table 1. Model Information

Document Name and Treated As Volumetric Properties
Reference
Extrudel M ass: 1,00228 kg
Volume: 0,000138966 m” 3
Solid Body Density: 7860 kg/m” 3
Weight: 10,7043 N

Table 2. Mesh Information

Mesh type Solid Mesh
Mesher Used: Standard mesh
Jacobian points 4 Points
Mesh Quality High

Table 3. Mesh Information - Details

Total Nodes 82992
Total Elements 40808
Maximum Aspect Ratio 24,242
% of elements with Aspect Ratio < 3 90,0
% of elements with Aspect Ratio > 10 0,0662
% of distorted elements(Jacobian) 0
Time to complete mesh(hh;mm;ss): 00:04:00

5.RESULTS

The first 30 natural frequencies and mode shapealkeo§tudied circular saw are determined. The
estimated natural frequencies are shown in Tabl€hé. results, which illustrate only some of the
natural modes, are included because of the linsiizgl of the article. They are shown in Figure 4 and
their characteristics and shown in Table 5.
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Table 4. Mode List

Frequency

Number Rad/sec Hertz Seconds
1 0 0 1e+032
2 0 0 1e+032
3 0 0 1e+032
4 0 0 1e+032
5 0 0 921,85
6 0 0 482,23
7 830,67 132,2 0,007564
8 833,09 132,59 0,007542
9 1402,4 223,19 0,0044804
10 1869,9 297,61 0,0033601
11 1871,3 297,83 0,0033576
12 3134,7 498,9 0,0020044
13 3159,6 502,86 0,0019886
14 3284,8 522,79 0,0019128
15 3289,4 523,52 0,0019101
16 4604,1 732,77 0,0013647
17 4638,9 738,3 0,0013545
18 5481,9 872,48 0,0011462
19 5586,6 889,13 0,0011247
20 6193 985,64 0,0010146
21 6233,5 992,09 0,001008
22 6400,3 1018,6 0,00098171
23 7806 1242,4 0,00080492
24 8011,7 1275,1 0,00078425
25 8389 1335,1 0,00074898
26 8415,9 1339,4 0,00074659
27 9208,2 1465,5 0,00068235
28 9512,9 1514 0,00066049
29 9524.4 1515,9 0,00065969
30 10441 1661,7 0,00060181
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Figure 4. Mode Shapes
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Figure 5. Mode Shapes
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Table 5. Characteristics of the natural modes

Name Type Min M ax
Displacement| URES: Resultant Displacement Plot 956,821 mm, 956,821 mm,
1 for Mode Shape: 1(Value = 0 Hz Node:1 Node: 1
Displacement Mode Shape: 7 0,00243795 mm,| 2317,14 mm,
7 (Value = 132,205 Hz) Node: 56584 Node: 1894
Displacement Mode Shape: 8 0,239693 mm, 2278,73 mm,
8 (Value = 132,591 Hz) Node: 39302 Node: 2163
Displacement Mode Shape: 9 0,0935076 mm, 2079,02 mm,
9 (Value = 223,194 Hz) Node: 49421 Node: 82772
Displacement Mode Shape: 10 0,0116976 mm, 2625,07 mm,
10 (Value = 297,61 Hz) Node: 42618 Node: 1894
Displacement Mode Shape: 11 0,0326917 mm, 2682,8 mm,
11 (Value = 297,829 Hz) Node: 43541 Node: 1345
Displacement Mode Shape: 12 0,00666125 mm,| 2914,29 mm,
12 (Value = 498,898 Hz) Node: 57539 Node: 1192
Displacement Mode Shape: 13 0,0139329 mm, 3080,15 mm,
13 (Value = 502,865 Hz) Node: 39758 Node: 1345
Displacement Mode Shape: 15 0,0193011 mm, 2230,85 mm,
15 (Value = 523,521 Hz) Node: 46026 Node: 1818
Displacement Mode Shape: 16 0,0193842 mm, | 3132,61 mm,
16 (Value = 732,772 Hz) Node: 38799 Node: 2315
Displacement Mode Shape: 18 0,106837 mm, 2037,22 mm,
18 (Value = 872,479 Hz) Node: 57671 Node: 924
Displacement Mode Shape: 19 0,00868428 mm,| 2105,59 mm,
19 (Value = 889,133 Hz) Node: 47490 Node: 3052
Displacement Mode Shape: 20 0,0222579 mm, 3661,65 mm,
20 (Value = 985,644 Hz) Node: 35492 Node: 2163
Displacement Mode Shape: 21 0,164364 mm, 3325,77 mm,
21 (Value = 992,086 Hz) Node: 56060 Node: 82771
Displacement Mode Shape: 22 0,00942916 mm,| 3822,78 mm,
22 (Value = 1018,63 Hz) Node: 39776 Node: 1344
Displacement Mode Shape: 23 0,0454063 mm, 4243,03 mm,
23 (Value = 1242,37 Hz) Node: 82966 Node: 1264
Displacement Mode Shape: 25 0,0303029 mm, 3370,97 mm,
25 (Value = 1335,15 Hz) Node: 54714 Node: 2734
Displacement Mode Shape: 27 0,0194326 mm, | 4561,09 mm,
27 (Value = 1465,53 Hz) Node: 42088 Node: 1282
Displacement Mode Shape: 28 0,110482 mm, 2981,67 mm,
28 (Value = 1514,03 Hz) Node: 57640 Node: 67556
Displacement Mode Shape: 30 0,0202945 mm, 3969,34 mm,
30 (Value = 1661,66 Hz) Node: 38846 Node: 2296
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6. CONCLUSION

The paper presents the metodics and results ditindative investigation of the circular saw with
compensator grooves. The natural frequencies andenshapes of the studied circular saw are
obtained. The estimation is done by a current agfitin programme, taking into account the typical
characteristics in the structure of the kind o€wlar saws and the physical-mechanical charadterist
of their materials. The results of the investigatiprove practical significance of the developed
mechanic-mathematical model and the methods fadystf the circular saw with compensator
grooves. They point the possibilities for deterrtimas of resonant regimes and they are basis &r th
detailed studying.
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