Original scientific paper UDC: 621.934.8-045.79:004.942

INVESTIGATION OF THE NATURAL FREQUENCIES AND THE MODE SHAPES OF CIRCULAR SAW WITH COMPENSATING SLOTS BY THE FINITE ELEMENT METHOD

Georgi Vukov¹, Zhivko Gochev¹, Valentin Slavov²

¹University of Forestry, Faculty of Forest Industry, Sofia, Bulgaria, e-mail:georgiev@abv.bg; zhivkog@yahoo.com ²University of Chemical Technology and Metallurgy, Faculty of Metallurgy and Material Sciences, Sofia, Bulgaria, e-mail:valslav@abv.bg

ABSTRACT

This paper shows the methodics and results of the simulative investigation of the circular saw with compensating slots. The investigation is an extension of the previous one done by the authors. The natural frequencies and mode shapes of this kind of circular saws are obtained as results of the investigations. The estimation is done by application programme Cosmos Works. Physical and mechanical properties of the materials are taken into account. The adequate mechanic-mathematical model is used for the aims of the study. The typical characteristics of the structure of this kind of circular saws were taken into account in the model. The circular saw is drawn in 3D by the application programme Solid Works and it is modeled with four nodes 3D finite elements. The results of this investigation prove the practical significance of the model. They point the possibilities for determinations of resonant regimes and they are basis for their detailed studying.

Keywords: circular saws, modeling, vibrations

1. INTRODUCTION

The current circular saws are made of high quality steel with excellent mechanical characteristics. Therefore, during their constructive formation it is possible to foresee slots which improve the work of the saw. In addition, tungsten carbide teeth (TCT) can be included. They increase the wear resistance at the cutting. They are soldered to the saw's body by special technologies and they provide the necessary reliability during its work, as well as the quality of the product processing. An important condition in the production of the circular saws is reaching high accuracy of its designing shape and measures. This condition requires usage of current (more often laser) technologies for processing of the tool. Usage of current materials and technologies is a premise for making the circular saws which have qualities that are necessary for the practice. These saws allow intensification of the work process, using higher speed during cutting. This process has advantages but there are some problems. One of them is the excessive heating of the saw during its work. It can lead to deformations of the disk and damage the accuracy and quality of the processing of the production. To avoid that, it is necessary to make compensating slots in the saw's body. A circular saw with compensating slots is shown in Figure 1. The slots are formed in order to avoid deformations, thus saving the high quality of the cutting of the saw even in hard conditions (significant centrifugal forces, heating caused by the friction between the saw and the wood).

The existence of the compensating slots in the circular saw's body influences the frequencies of the natural vibrations and mode shapes of the circular saw. This impacts the tasks of the designing and measuring of the whole circular machine (Vukov, Gochev, Slavov 2010), (Vukov, Georgieva 2009), (Obreshkov, 1996). It is necessary to do beforehand some estimations of the danger of the resonance.

Therefore, it's necessary to investigate the natural frequencies and mode shapes of the circular saw. It leads to simulative investigations which help differ the resonant regimes (Amirouche, 2006), (Coutinho, 2010). They are done on the basis of adequate mechanic-mathematical model, taking into account the typical characteristics of the structure and the physical-mechanical characteristics of the materials of this kind of circular saws (Veits, Kochura, Martinenko, 1971), (Minchev, Grigorov, 1998), (Philipov, 1977).

Figure 1. Circular saw with compensating slots

The aim of the study is to build an adequate mechanical-mathematical model for investigation of free vibrations of a kind of circular saws with compensating slots, concerning characteristics in its structure. Some simulative investigations can be made on this basis and these investigations can help to define resonance regimes and to formulate some requirements needed to avoid them.

2. MECHANIC-MATHEMATICAL MODEL OF CIRCULAR SAW WITH COMPENSATING SLOTS

The circular saw with compensating slots, drawn in 3D by the application programme Solid Works (<u>www.solidworks.com</u>), is shown in the Figure 2.

Figure 3 shows the mesh of four node 3D finite elements, modeled by the application programme Cosmos Works.

Figure 2. Circular saw with compensating slots, drawn in 3D

The investigation of the vibrations of the circular saw with compensating slots requires formulation and solution of the differential equations which describe these processes. Therefore, the matrix mechanics is used (Angelov, 2010), (Angelov, Slavov, 2010).

3. DIFFERENTIAL EQUATIONS

The differential equations which describe the free continuous vibrations of the circular saw are

$$\mathbf{M}.\ddot{\mathbf{q}} + \mathbf{C}.\mathbf{q} = \mathbf{0},\tag{1}$$

Where:

 $\mathbf{q} = [q_1 \quad q_2 \quad \dots \quad q_n]^T$ is the vector of the generalized coordinates; (2) \mathbf{M} – the matrix, which characterizes the mass-inertial properties of the mechanical system; \mathbf{C} – the matrix, which characterizes the elastic properties of the mechanical system.

Model name: Cirkulyar-2-2011 Study name: Study 3 Mesh type: Sold mesh

Figure 3. The circular saw with compensating slots, modeled by the mesh of finite elements

The system of connected linear differential equations is obtained when the vibrations are small. Particular solutions of the system of the differential equations (1) are searched as:

 $q_r = h_r . \sin(\omega_r . t + \varphi)$,

Where h_r is the amplitude of the small vibration on the generalized coordinate q_r with natural frequency ω_r , and φ is initial phase.

After differentiation of (3) and substituting in (1), a system of linear algebraic equations is obtained:

$$\left| \mathbf{C} - \boldsymbol{\omega}^2 \cdot \mathbf{M} \right| \cdot \mathbf{V} = 0 \,. \tag{4}$$

To determine the natural frequencies and the mode shapes, it is necessary to solve the task of finding the natural values and the natural vectors of the equations (4). A satisfactory result of the equations (4) requires the following:

$$\det\left(\mathbf{C}-\boldsymbol{\omega}^2\,.\,\mathbf{M}\right)=0\,.\tag{5}$$

The roots of the characteristics equation determine the natural frequencies. The natural frequencies form the matrix of the natural values. It is:

$$\omega = diag\left[\omega_{r,r}\right], \quad r = 1, 2, \dots n \,. \tag{6}$$

The natural frequencies are determined by (6):

$$f_r = \frac{\omega_{r,r}}{2.\pi} Hz.$$
⁽⁷⁾

(3)

The natural values of the system (5) determine the natural vectors. The modal matrix of the free vibrations is determined by the equations (4) and (5):

$$\mathbf{V} = \begin{bmatrix} V_{11} & V_{12} & \dots & V_{1n} \\ V_{21} & V_{22} & \dots & V_{2n} \\ \dots & \dots & \dots & \dots \\ V_{m1} & V_{m2} & \dots & V_{mn} \end{bmatrix} \qquad i = 1...m; \quad j = 1..n,$$
(8)

where V_{ij} are the unknown amplitudes of the nodes' moving by free vibrations. The natural frequencies and the mode shapes are determined by the known matrix, which characterizes the massinertial properties and the matrix that characterizes the elastic properties of the mechanical system.

4. NUMERICAL INVESTIGATIONS

Numerical investigation is done by modeling of a kind of circular saws with compensating slots by the finite elements method. Physical-mechanical characteristics of materials are taken into account – they are shown in Tables 1, 2 and 3. The estimation of the natural frequencies and mode shapes of the circular saw is done by the application programme Cosmos Works.

Document Name and Reference	Treated As	Volumetric Properties
Extrude1	Solid Body	Mass:1,09228 kg Volume:0,000138966 m^3 Density:7860 kg/m^3 Weight:10,7043 N

Table 1. Model Information

Table 2. Mesh Information

Mesh type	Solid Mesh
Mesher Used:	Standard mesh
Jacobian points	4 Points
Mesh Quality	High

Table 3. Mesh Information - Details

Total Nodes	82992
Total Elements	40808
Maximum Aspect Ratio	24,242
% of elements with Aspect Ratio < 3	90,0
% of elements with Aspect Ratio > 10	0,0662
% of distorted elements(Jacobian)	0
Time to complete mesh(hh;mm;ss):	00:04:00

5. RESULTS

The first 30 natural frequencies and mode shapes of the studied circular saw are determined. The estimated natural frequencies are shown in Table 4. The results, which illustrate only some of the natural modes, are included because of the limited size of the article. They are shown in Figure 4 and their characteristics and shown in Table 5.

Frequency Number	Rad/sec	Hertz	Seconds
1	0	0	1e+032
2	0	0	1e+032
3	0	0	1e+032
4	0	0	1e+032
5	0	0	921,85
6	0	0	482,23
7	830,67	132,2	0,007564
8	833,09	132,59	0,007542
9	1402,4	223,19	0,0044804
10	1869,9	297,61	0,0033601
11	1871,3	297,83	0,0033576
12	3134,7	498,9	0,0020044
13	3159,6	502,86	0,0019886
14	3284,8	522,79	0,0019128
15	3289,4	523,52	0,0019101
16	4604,1	732,77	0,0013647
17	4638,9	738,3	0,0013545
18	5481,9	872,48	0,0011462
19	5586,6	889,13	0,0011247
20	6193	985,64	0,0010146
21	6233,5	992,09	0,001008
22	6400,3	1018,6	0,00098171
23	7806	1242,4	0,00080492
24	8011,7	1275,1	0,00078425
25	8389	1335,1	0,00074898
26	8415,9	1339,4	0,00074659
27	9208,2	1465,5	0,00068235
28	9512,9	1514	0,00066049
29	9524,4	1515,9	0,00065969
30	10441	1661,7	0,00060181

Table 4. Mode List

Figure 4. Mode Shapes

Figure 5. Mode Shapes

Name	Туре	Min	Max
Displacement	URES: Resultant Displacement Plot	956,821 mm,	956,821 mm,
1	for Mode Shape: 1(Value = 0 Hz)	Node:1	Node: 1
Displacement	Mode Shape: 7	0,00243795 mm,	2317,14 mm,
7	(Value = 132,205 Hz)	Node: 56584	Node: 1894
Displacement 8	Mode Shape: 8	0,239693 mm,	2278,73 mm,
	(Value = 132,591 Hz)	Node: 39302	Node: 2163
Displacement	Mode Shape: 9	0,0935076 mm,	2079,02 mm,
9	(Value = 223,194 Hz)	Node: 49421	Node: 82772
Displacement	Mode Shape: 10	0,0116976 mm,	2625,07 mm,
10	(Value = 297,61 Hz)	Node: 42618	Node: 1894
Displacement	Mode Shape: 11	0,0326917 mm,	2682,8 mm,
11	(Value = 297,829 Hz)	Node: 43541	Node: 1345
Displacement	Mode Shape: 12	0,00666125 mm,	2914,29 mm,
12	(Value = 498,898 Hz)	Node: 57539	Node: 1192
Displacement	Mode Shape: 13	0,0139329 mm,	3080,15 mm,
13	(Value = 502,865 Hz)	Node: 39758	Node: 1345
Displacement	Mode Shape: 15	0,0193011 mm,	2230,85 mm,
15	(Value = 523,521 Hz)	Node: 46026	Node: 1818
Displacement	Mode Shape: 16	0,0193842 mm,	3132,61 mm,
16	(Value = 732,772 Hz)	Node: 38799	Node: 2315
Displacement	Mode Shape: 18	0,106837 mm,	2037,22 mm,
18	(Value = 872,479 Hz)	Node: 57671	Node: 924
Displacement	Mode Shape: 19	0,00868428 mm,	2105,59 mm,
19	(Value = 889,133 Hz)	Node: 47490	Node: 3052
Displacement 20	Mode Shape: 20	0,0222579 mm,	3661,65 mm,
	(Value = 985,644 Hz)	Node: 35492	Node: 2163
Displacement	Mode Shape: 21	0,164364 mm,	3325,77 mm,
21	(Value = 992,086 Hz)	Node: 56060	Node: 82771
Displacement	Mode Shape: 22	0,00942916 mm,	3822,78 mm,
22	(Value = 1018,63 Hz)	Node: 39776	Node: 1344
Displacement	Mode Shape: 23	0,0454063 mm,	4243,03 mm,
23	(Value = 1242,37 Hz)	Node: 82966	Node: 1264
Displacement	Mode Shape: 25	0,0303029 mm,	3370,97 mm,
25	(Value = 1335,15 Hz)	Node: 54714	Node: 2734
Displacement 27	Mode Shape: 27	0,0194326 mm,	4561,09 mm,
	(Value = 1465,53 Hz)	Node: 42088	Node: 1282
Displacement 28	Mode Shape: 28	0,110482 mm,	2981,67 mm,
	(Value = 1514,03 Hz)	Node: 57640	Node: 67556
Displacement 30	Mode Shape: 30	0,0202945 mm,	3969,34 mm,
	(Value = 1661,66 Hz)	Node: 38846	Node: 2296

6. CONCLUSION

The paper presents the metodics and results of the simulative investigation of the circular saw with compensator grooves. The natural frequencies and mode shapes of the studied circular saw are obtained. The estimation is done by a current application programme, taking into account the typical characteristics in the structure of the kind of circular saws and the physical-mechanical characteristics of their materials. The results of the investigation prove practical significance of the developed mechanic-mathematical model and the methods for study of the circular saw with compensator grooves. They point the possibilities for determinations of resonant regimes and they are basis for their detailed studying.

REFERENCES

- [1] Angelov, I. V. (2010): Matrix mechanics Dynamics, Avangard Prima, Sofia.
- [2] Angelov, I. V., Slavov, V. R. (2010): Book of problems. Matrix mechanics Dynamics, Avangard Prima, Sofia.
- [3] Veits V. L., Kochura A. E., Martinenko A.M. (1971): Dynamical investigation of drive machines Moscow.
- [4] Vukov, G. Y., Zh. Gochev, V. Slavov (2010): Torsional Vibrations in the Saw Unit of a Kind of Circular Saws. Mechanical-Mathematical Model. Proceedings Scientific Papers, Third Scientific and Technical Conference "Innovation in Forest Industry and Engineering Design", Sofia, pp. 185-188.
- [5] Vukov, G. Y., D. Georgieva (2009): Application of Monitoring Systems and Diagnostics for Increase of Effectiveness, Economy and Reliability of the Equipment in the Woodworking and Furniture Production. Management & Sustainable Development № 1, y. 11, V 22, University of Forestry, Sofia, pp. 196-201.
- [6] Minchev N., Grigorov V. (1998): Vibration control of rotation and piston machines. Sofia.
- [7] Obreshkov P. (1996): Woodworking machines. Sofia.
- [8] Philipov G. (1977): Woodworking machines. Sofia.
- [9] Amirouche F. (2006): Fundamentals of Multibody Dynamics Theory and Applications, Birkhäuser, Boston.
- [10] Coutinho M. (2001): Dynamic Simulations of Multibody Systems, Springer-Verlag, New-York. <u>www.solidworks.com</u>.