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ABSTRACT 

 

 The requirements of Industry 4.0 and beyond go hand in hand with adaptive, intelligent process 

control through the application of some form of AI. To this end, some acoustic phenomena have been 

observed in this series of research conducted over the last few years. Noise analysis for different 

working conditions of circular saw blades was investigated in this study. The main objective of this 

work was to verify the existing relationships between the recorded noise patterns and the 

corresponding operating conditions of different circular saw blades. This goal was achieved by 

analysing noise signals and using different neural network architectures, such as GoogleNet, 

MobileNetV2, VGG19, DenseNet, SqueezeNet, ResNet and InceptionV3. The results obtained in this 

series of investigations suggest that the noise generated during cutting can be used as a tool for process 

monitoring with high accuracy. Various cases are presented in this paper, such as determining the 

speed of the same saw, recognising different types of saws idling at different speeds, recognising types 

of wood being processed with the same saw, and idling the same type of saw at different bluntness and 

utilisation. In all cases presented, the trained neural networks showed a relatively high accuracy in 

determining the observed output. 
 

Keywords: acoustic signal, circular saw blade, wood machining, process monitoring, decision 

making, deep learning network. 

 

 1. INTRODUCTION 

 

 When several bodies or media interact with each other, sound is inevitably generated. It is 

regarded as a mechanical wave that propagates through the surrounding medium, such as gas, liquid or 

solid. By definition, sound is a longitudinal wave that represents fluctuations in the pressure or density 

of the conducting medium. Sound can be defined as a signal, i.e., it carries information, such as 

speech. It is determined by amplitude, frequency and duration. Sound is often equated with noise, i.e., 

if a sound has no recognisable pattern, it is classified as noise. 

 A tool (circular saw blade) behaves like a noise source, either when idling or when cutting. In the 

first case, it behaves like a vibrating guitar string which, depending on the speed, the number of teeth 

and the geometry of the teeth, produces a sound that is often referred to as whistling. In the second 

case, additional noise is generated by the interaction between the tool and the material, which is 

strongly influenced by the properties of the material itself. The noise generated during woodworking 

comes from four possible sources: the machine motor, the gearbox, the whistling of the tool and the 

interaction between the tool and the material. These noises cannot be observed separately during 

processing. The interaction between tool and material leads to an increased load on the motor and 

influences the whistling of the tool, so that a comparison of the noise when idling and the noise during 

cutting is pointless. 
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 In recent decades, many authors have addressed the possibility of using noise as a means of 

process monitoring. This is important from the point of view of carrying out the cutting process within 

the specified optimum parameter limits, the surface quality, the possible exceeding of the power used 

or the blunt condition of the tool. 

 Different types of broadband frequency sensors (Nasir et al. 2019, Tanaka et al. 1992, Aguilera et 

al. 2007) or microphones (Cyra and Tanaka 2000, Iskra and Tanaka 2005, 2006, Iskra and Hernández 

2012, Aguilera et al. 2016, Miric-Milosavljevic et al. 2023) were used for sound and acoustic emission 

(AE) measurements. In addition, the sound recordings were processed using MATLAB software 

(Nasir et al. 2019, Mandic et al. 2015, Miric-Milosavljevic et al. 2023). 

 Both power consumption and sound or AE signals provide inputs for process control and 

monitoring (Goli et al. 2010, Aguilera and Zamora 2007, Aguilera and Barros 2010, 2012, Aguilera 

2011a). 

 While cutting force (Naylor et al. 2012, Porankiewicz et al. 2011, Goli et al. 2018) and power 

consumption (Kovač et al. 2021) have been evaluated as factors that strongly depend on selected 

cutting parameters, some authors did not find a strong relationship between noise and other sawing 

and milling factors (Szwajka et al. 2008) and mostly concluded that AE signals gave worse results 

than power measurements (Jemielniak et al. 2011), while some others only investigated sound 

pressure level as an output. It is important to emphasise that most of the work focused on milling. 

 The progression of tool bluntness during milling was also investigated using sound pressure 

measurements (Aguilera et al. 2016) and provided satisfactory results. 

 However, the frequency, time domain and intensity analysis was performed by a few authors 

(Mohring et al. 2019, Nasir et al. 2019, 2020 and 2021). The noise represents a three-dimensional 

signal and must therefore be observed in this way. A simple amplitude or sound pressure analysis 

cannot provide satisfactory input for further processing or relevant considerations. This method 

provided a comprehensive picture of the sounds generated during cutting with different tools that 

allow further analysis and the implementation of different artificial neural networks (ANN) to monitor 

the whole process. 

 Various signal processing techniques using time and frequency analyses are used to determine the 

effects of the cutting parameters. The monitoring of the machining process, predictions and decision-

making can be achieved by some AI technologies such as artificial neural networks (ANN), fuzzy 

logic and neuro-fuzzy inference systems (Abellan-Nebot and Subirón 2010). The prediction of tool 

wear (Szwajka et al. 2008, Zbieć 2011, Zafar et al. 2015) and the prediction of parameters (Iskra and 

Hernández 2012) were achieved using the ANN approach. The modelling and prediction of surface 

roughness was also performed using ANN (Iskra and Hernández 2009 and 2012, Tiryaki et al. 2014, 

Stanojevic et al. 2017). 

 Deep learning networks, or more generally, AI approaches in wood research, are used for wood 

identification (Sun et al. 2021, de Geus 2020), wood fibre segmentation (Kibleur et al. 2022), wood 

processing and tool monitoring (Nasir and Sassani 2021, Jegorowa et al. 2021) and classification of 

processing parameters (Svrzic et al. 2023). The basic idea of AI implementation is to create a tool that 

can be used to make decisions that can lead to more efficient production processes. In order to achieve 

intelligent production, the collected data must be transformed in such a way that it is suitable for the 

deep learning process. In general, there are some rules for the preparation of raw data: 1) The data 

must be suitable for the network architecture; 2) the dimensionality must be reduced so that the 

patterns are more recognisable; and 3) the data must be prepared in such a way that it covers the entire 

solution space. 

 Regarding the scope of this article, particular attention has been paid to the acquisition and 

analysis of sound signals (also in terms of measuring cutting performance), especially considering that 

there is still much room for theoretical, experimental and even more practical applications in the field 

of woodworking. The global market for woodworking machinery was estimated at $4.72 billion in 

2022 and is expected to grow from $4.86 billion in 2023 to $6.80 billion in 2030 (Fortune Business 

Insight 2023). The proposed approach to process control can increase the applicability and commercial 

value of the machine and thus contribute to the global market. 
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 2. MATERIALS AND METHODS 

 

 The Freud LU1C 0100, Freud LU2B 0500 and Freud LU2C 1200 circular saw blades were used 

for this study (Fig. 1 a, b and c). The corresponding numbers of teeth were 22, 48 and 80, respectively. 

The saw blade LU1C 0100 and the other two have a diameter of 250 mm, an inner diameter of 30 mm, 

a cutting width of 3.2 mm and a body thickness of 2.2 mm. The carbide-tipped teeth form of the LU1C 

0100 is ATB with a positive cutting angle of 10° (Table 1). According to the manufacturer, this blade 

is intended for longitudinal and cross cuts in solid wood. The LU2B 0500 blade has ATB-shaped 

carbide teeth with a positive cutting angle of 10° and is intended for cutting solid wood and wood-

based materials. The third saw blade is the LU2C 1200 with tungsten carbide (TC), ATB-shaped teeth 

and a positive cutting angle of 15°. It is designed for rip and cross cuts in softwood, hardwood and 

wood-based materials. 

 

 
                  (a)                  (b)                (c) 

Figure 1. FREUD (a) LU1C 0100; (b) LU2B 0500; (c) LU2C 1200 circular saw blades. 

 

Table 1. The tool and cutting conditions. 

Cutting tool LU1C0100 (Freud) LU2B 0500 LU2C 1200 

Cutting speed 4000 min
-1

 2000/3000/4000 4000 min
-1 

Feed rate 10 m/min. - - 

Teeth shape ATB ATB ATB 

Number of teeth 22 48 80 

Diameter (mm) 250 250 250 

Body thickness b (mm) 2.2 2.2 2.2 

Cutting width B (mm) 3.2 3.2 3.2 

Rake angle (°) 20 20 18 

Clear angle (°) 15 13 5 

Inclination angle (°) 10 10 10 

Tool override (mm) 10 - - 

 

Table 2. Material conditions. 

 Beech 

 

Fir 

Moisture content (avg.)  

(%) 

8.16 

 

8.65 

 

St. Dev 0.41 0.14 

Wood density air dry (avg.) 

(g/cm
3
) 

0.71
 

 

0.42
 

St. Dev 2.6*10
-2

 3.7*10
-3

 

Wood density oven dry (avg.) 

(g/cm
3
) 

0.69
 

 

0.40
 

 

St. Dev 2.5*10
-2

 4.4*10
-3
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 In one phase of this study, boards of beech (Fagus moesiaca) and fir (Abies alba) measuring 1000 

mm × 500 mm × 35 mm were cut. The number of boards was 12, and the total number of cuts was 480 

for each species. The cutting tool utilised was the LU1C 0100 circular saw blade, which is intended 

for cutting solid wood both longitudinally and crosswise. 

 The study was conducted in the Laboratory of Machines and Apparatus at the Faculty of Forestry, 

University of Belgrade (Belgrade, Serbia). The machining system used for this study was a Minimax 

CU 410K combined machine (SCM, Rimini, Italy) equipped with a 3 kW three-phase asynchronous 

motor. The speed of the motor was set by a customised frequency controller to 4000 rpm with a 

corresponding frequency of 50.5 Hz. The noise occurring when the tool was idling was recorded using 

a dbx RTA-M measurement microphone with an electret condenser on the back (Fig. 2a). The RTA-M 

is an omnidirectional, low-profile frequency measurement microphone specifically designed to record 

all frequencies from 20 Hz to 20 kHz, ensuring accurate "real-time" "pinging" analysis of the audio 

signal. It is operated with phantom power. To reduce the effects of vibration, the microphone is 

housed in a vibration-damping rack. The Focusrite Scarlett SOLO USB audio interface (Fig. 2b) was 

connected to a PC. Audacity, a cross-platform open-source audio software, was used to record the 

audio signals. The recordings were sliced and trimmed using the WavePad Sound Editor developed by 

NCH Software. The measurements were carried out at a sampling rate of 44100 Hz. 

 

 
 

Figure 2a. RTA-M Measurement microphone. 

 

 
Figure 2b. Scarlet SOLO audio interface. 

 

 The microphone was placed 1200 mm away from the rotating tool. The Dino-Lite Edge USB 

microscope with 470x magnification was used for visual observation of the tool condition in the case 

of the LU2C 1200 saw (Fig. 3). 

 
Figure 3. Dino-Lite Edge USB microscope. 

 

 The investigation was divided into the following sections: 

 1. The idle rotation of the LU2B0500 saw at three different speeds (2000, 3000 and 4000 rpm); 
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 2 The idle rotation of three different saws (LU1C 0100, LU2B 0500 and LU2C 1200) at the same 

speed (4000 rpm); 

 3. Cutting beech and fir wood with the LU1C 0100 saw at the same speed (4000 rpm); 

 4. The idle rotation of the LU2C1200 saw with different degrees of bluntness at the same speed 

(4000 rpm).  

 

 
Figure 4. Experimental flowchart. 

 

 The experimental flowchart of the research carried out is shown in Fig. 4. The blue arrows show 

the processes in experimental sections 1, 2 and 4, while the red arrows represent section 3. 

 The device has a Circutor CW-TAN active power transformer for unbalanced three-phase systems 

with the following characteristics: alternating current 5 A, alternating voltage 230 V, frequency 50 Hz, 

accuracy 0.5% and analogue voltage output 0-10 V (Mandić et al. 2011). The possible measuring 

ranges are 5, 10 and 15 kW. The measured cutting power data are given in watts. The operator selects 

the expected range for a better resolution of the results. The entire system is based on the Power 

Expert software platform, and the sampling rate has been set to 1000 Hz. The device is also suitable 

for mobile use. The rotational speed of the saw blade has been set to 4000 rpm with the frequency 

controller connected to the machine's electric motor. The drive electric motor provides the energy for 

the interaction between the tool and the wood and for overcoming any friction that occurs between the 

moving parts of the machine. 

 

                (1) 

 

 Where: PC - useful power engaged for wood cutting, PI – machine parts friction overcoming 

power (idle power), and PT – total power. The power consumption used in this work was the useful 

power PC. 

 The sounds produced during the experiment came from moving machine parts (electric motor, 

bearings, spindles, etc.) and from the whistling of the saw blade. These sounds were captured with the 

microphone and recorded on the PC as wave files. Originally, the length of the wave files was 4 

minutes for each saw blade speed. Spectral analysis was performed on these recordings using the fast 
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Fourier transform (FFT) and the short-time Fourier transform (STFT). On these recordings, spectral 

analysis was performed using FFT and STFT. The following set of equations describes FFT. 

 

        
      

         
     

   
       (2) 

 

              
    

     

   
                (3) 

 

                
        

     

   
     (4) 

 

 In these equations, N is a number of samples, hi and gi equal sets of samples, W=e
-jΩT

 and Fk is 

the Fourier series for discrete Fast Fourier Transformation (FFT). For N/2 even and N/2 odd samples, 

the expressions in Eqs. 3 and 4 could be regarded as discrete Fourier transformations (DFTs). The 

number of iterations required for completing the process described in Eq. 3 is Nlog₂ N. The short-time 

Fourier transform, or short-term Fourier transform (STFT), is a natural extension of the Fourier 

transform in addressing signal non-stationarity by applying windows for segmented analysis. In 

practice, the procedure for computing STFTs is to divide a longer time signal into shorter segments of 

equal length and then compute the Fourier transform separately on each shorter segment. The 

sound/noise signals thus transformed could present the starting point for alternative machining systems 

and process monitoring and for introducing smart machining. 

 The use of just FFT was not enough for detailed analysis because the obtained power spectrum 

involved lots of noise or parasitic frequencies. Further implementation of wavelet transformation, 

involving Daubechies wavelet, thus obtaining a spectral density graph, significantly smoothened the 

spectral line, thus pointing to which spectral areas are to be carefully observed. This is particularly 

important for creating inputs to databases for deep learning networks. Wavelet transform could be 

described by the following equations: 

  

        
 

  
  

   

 
                  (5) 

 

                           (6) 

  

  Where Ψ presents the mother wavelet with its parameters a and b, which present the trimming 

and sliding of the wavelet, respectively; W is the wavelet transform function, and f is the time domain 

data function. 

       A further step was the creation of a database for training deep learning networks. All of the sound 

signal recordings were transformed into 2D images of 3D spectrograms accomplished by MATLAB 

R2023 edition. Spectrograms are 3D (frequency-time-power) charts obtained by STFT or wavelet 

transform of original sound signals. The 2D presentation involves an RGB scale to present the power 

of certain peaks or spectral areas. 

            The process of creating spectrograms is known as Gabor transform, and it is intended for 

making time-frequency plots. The main idea is convoluting the window function (Gaussian function of 

different lengths) with the time series data function: 

 

                        
 

  
    (7) 

  

 Where G is the Gabor transform, f(τ) is the data function, and g is the window function. 

 

 A further step consisted of cutting the entire 4-minute recording into smaller, even parts of 1 

second in length, which was done using the WavePad software. Now it was possible to create a 

database for training the deep learning network. The first step was to import all 240 short-time 

recordings of the sound signal for each saw blade speed and convert them into 2D images of 3D 

spectrograms. Spectrograms are 3D plots (frequency-time-power) obtained by STFT or wavelet 

transform of the original sound signals. In the 2D representation, an RGB scale is used to represent the 
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power of specific peaks or spectral regions. These 2D spectrograms were saved in the JPG format and 

served as training data for the deep learning networks GoogleNet, MobileNetV2, VGG19, DenseNet, 

SqueezeNet, ResNet and Inception V3, which were developed specifically for image recognition. All 

the implementation was done by using the Python 3.7.4 programming language, along with the 

PyTorch 1.6.0 and Torchvision 0.7.0 libraries with the CUDA 10.2 GPU drivers. All the computations 

were done on the workstation with the AMD Threadripper 3970X (32 cores, 3.79 GHz processor), 128 

GB RAM and two Titan RTX (24 GB) + NVLink GPUs. 

 

 4. RESULTS AND DISCUSSION 

 

 The examples of the recordings in wave format for different phases of the experiment are shown 

in Fig. 5. They have different shapes, indicating different sound intensities, but do not provide 

sufficient data for classification or any kind of analysis. These audio files were subjected to an FFT to 

extract specific frequency ranges that could indicate signal changes in order to distinguish different 

working conditions. The graphs of the FFT for specific cases show the average values of the signal 

intensities for specific frequencies, excluding the time domain (Fig. 6).  

 

 

 
(a) (b) 

 
(c) (c) 

Figure 5. Example of wav format recordings for: (a) LU1C 0100 at 3000 rpm; (b) LU1C 0100 at 4000 

rpm; (c) LU2B 0500 at 4000 rpm and LU2C 1200 at 4000 rpm. 
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(a) (b) 

 

 
(c) (d) 

Figure 6. Average FFT for: (a) LU1C 0100 at three different speeds; (b) LU1C 0100, LU2B 0500 and 

LU2C 1200 at same speed, (c) LU1C 0100 when cutting beech and fir wood and (d) new  

and used LU2C 1200. 

 

 In most cases of the average FFT, the graphs behave in very different ways. The most obvious 

examples are the idling noise of the LU1C 0100 at three given speeds and the idling noise of all saws 

at the same speed (Figs. 6a and b). The less noticeable differences are found in the idling noises of the 

new and the old LU2C 1200 saw (Fig. 6d). The legend in Fig. 6 (a) with the markings L and R stands 

for the left and right recording channels, which are identical, so that there are only three lines: purple 

for 4000, blue for 3000 and red for 2000 rpm. The spectral ranges between 0 and 500 Hz show very 

pronounced peaks at all speeds, which increase as the speed of the processing system increases. These 

peaks are due to the noise generated by the machine itself – the rotation of the electric motor, spindle 

and gearbox. Another interesting spectral range is between 1000 and 3500 Hz. At these frequencies, a 

clear increase in the signal can be recognised, which is due to the rotation of the circular saw blade. 

This assumption is based on simple maths: 2000 revolutions per minute correspond to approximately 

66 revolutions per second; multiplied by 48 saw blades results in a frequency of approximately 1600 

Hz. At 3000 revolutions per minute, the frequency is 2400 Hz, and at 4000 revolutions per minute, the 

frequency value is 3168 Hz. 

 Taking into account the three-column problem and according to Fig. 6 (b), it was possible to 

extract two spectral ranges that were of interest for further analysis. The first spectral range extended 

from 0 to about 700 Hz with a peak at 100 Hz. The curves for all three saw blades observed 

overlapped in this range. As previously mentioned (Svrzic et al. 2023), this spectral range could be 

related to the noise generated by the machine itself. Since the speed was the same for all saw blades, 

the curves overlapped completely. The second spectral range of interest is from about 1000 Hz to 

about 5000 Hz. The spectral density curves for all three saw blades showed different behaviour in this 



Svrzić: Machining acoustic: signal processing and deep learning as a tool for process monitoring 

_________________________________________________________________________________________________________________ 

International Journal - Wood, Design & Technology, Vol.14,No.1.(2025):68-83                                          76 

range and resulted in different peak values, especially in the case of the LU1C saw blade. This spectral 

range was associated with the noise generated when the observed circular saw blades are idling. As 

can be seen from Fig. 6(c), the sound intensities for beech are significantly higher in the spectral range 

from 0 to about 4500 Hz. This is consistent with previous studies (Miric-Milosavljevic et al. 2024), in 

which the idling noise of the same circular saw blade was analysed and in which these frequencies 

were also found, but with an order of magnitude higher intensity. Some of the peaks in the spectral 

density diagram are particularly interesting. At a frequency of 1400 Hz, the peak for beech is 472000 

(A.U.), which is more than twice as high as 230000 (A.U.) for fir. A slightly smaller divergence 

occurs at 2900 Hz. At this spectral point, the intensity was 453000 (A.U.) for beech and 439000 

(A.U.) for fir. The most interesting intensity peak was found at 4300 Hz, where the intensity was 

309000 (A.U.) for beech and 124000 (A.U.) for fir, as this peak was completely absent in previous 

studies (Miric-Milosavljevic et al. 2024). Some high-frequency overtones occurred in fir but not in 

beech in the spectral ranges from 7500 to 17500 Hz and from 26000 to 30000 Hz. The reason for this 

is not entirely clear. One possible explanation lies in the different macroscopic structures of the 

selected wood species. As a softwood, fir consists mainly of tracheids (91%), which are considerably 

longer than the tracheids and libriform fibres of beech. The proportion of cellulose, which has a large 

proportion of crystalline structure, is also significantly higher in fir wood than in beech wood. In 

particular, the microfibril angle in the S2 layer of the cell wall is considered an important factor for 

sound propagation in wood (Brémaud 2012). Compared to most hardwoods, softwoods have a very 

homogeneous cell structure and uniseriate rays. The transition of waves from tracheid to tracheid 

without the strong influence of vertically orientated rays can be seen as a key factor for wave 

propagation in fir. This leads to the conclusion that the high-frequency waves in the sound spectrum of 

fir wood are mainly the result of wave propagation from tracheid to tracheid (Dünisch 2017). 

 The average FFT for new and used LU2C 1200s is similar, with peaks at low frequencies below 

500 Hz and other interesting peaks in the spectral range from 1500 to just above 5000 Hz. In this case, 

the differences in the waveform are not as obvious as in the previous cases. 

 However, the average FFT offers no insight into the time scale. As already mentioned, the peaks 

shown in Fig. 6 (a), (b), (c) and (d) are merely average values at specific points in time. Considering 

the cyclical nature of the sounds generated during the experiment, the overall picture is somewhat 

blurred. The STFT is a logical step in visualising the sound signals obtained. 

 

 
Figure 7. Average cutting powers for beech and fir wood. 

 

 Power consumption was also measured when cutting beech and fir wood. The average values of 

the cutting performance for beech and fir wood are shown in Fig. 7. As expected, the average value of 

the cutting performance for beech is about 50% higher than for fir. 

 In Fig. 8 (a), the photo under the microscope shows a brand new, unpackaged circular saw blade. 

It can be seen that the teeth edges and surfaces are in perfect condition, while the same image (b) of a 

used tool shows cracked edges, traces of corrosion and material deposits on the lateral teeth surfaces. 
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(a) (b) 

Figure 8. Microscopic picture (a) new blade; (b) used blade of LU2C 1200. 

 

 The next step in data processing was to create suitable inputs for ANN. The input data for deep 

learning networks are spectrograms (see Figs. 9 to 13). The spectrograms were divided into an 

appropriate number of folders (one for each category according to the number of factors). 

 
(a) (b) 

 

Figure 9. Spectrograms presented in (a) 2D and (b) 3D.  

 

 
                  (a) (b)            (c) 

Figure 10. Adjusted spectrograms for LU1C 0100 at: (a) 2000 rpm (b) 3000 rpm and (c) 4000 rpm. 
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                          (a) (b)           (c) 

Figure 11. (a) Spectrogram without tick and axes for processed sound signal for the LU1C circular 

saw blade; (b) Spectrogram without tick and axes for processed sound signal for the LU2B circular 

saw blade; (c) Spectrogram without tick and axes for processed sound signal for the LU2C circular 

saw blade. 

 
                  (a)                             (b) 

Figure 12. Sound spectrograms for: (a) fir and (b) beech wood. 

 

 
               (a)                             (b) 

Figure 13. Spectrograms for LU2C 1200 (a) new; (b) used circular saw blade. 

 

 The metrics selected for the evaluation and comparison of the developed models included: 

 

         
     

           
      (8) 

 

          
  

     
                (9) 

 

      
  

     
                       (10) 

 

         
               

               
  (11) 

 

 where Tp are true positive classifications, Tn are true negative classifications, Fp are false positive 

classifications and Fn are false negative classifications. 

 The results for the trained networks are shown in Figs. 14 and 15 and Tables 3 and 4. To analyse 

the idle noise (research stages one and two), the GoogleNet network was chosen for selected tools, 
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while six different networks were used for the other stages: MobileNetV2, VGG19, DenseNet, 

SqueezeNet, ResNet and Inception V3. 

 

 

 
Figure 14. Deep learning process report (single blade different rotational speeds). 

 

 

 
Figure 15. Deep learning network report (three different blades at same speed). 

 

 The validation accuracy for testing and decision-making for a single tool spinning at three 

different speeds was 100%, and for three different tools spinning at the same speed, it was 97.5%, all 

this according to GoogleNet ANN. 

 

Table 3. Performances of the developed deep learning models for machining sound classification. 

 
MobileNetV2 VGG19 DenseNet SqueezeNet ResNet Inception_v3 

Accuracy 0.980 0.960 0.950 0.950 0.970 0.940 

Precision 0.980 0.942 0.941 0.959 0.980 0.958 

Recall 0.980 0.980 0.960 0.940 0.960 0.920 

f1 0.980 0.961 0.950 0.949 0.970 0.939 

 

 The results of the deep learning models in the case of cutting different wood species are shown in 

Table 3. The best performance was achieved by the MobileNetV2 deep learning network with an 

accuracy of 98%. The second-best performance was achieved by the ResNet deep learning network 

with an accuracy of 97%, followed by VGG 19 (96%), DenseNet and SqueezeNet (95%), and finally 
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Inception-V3 with an accuracy of 94%. In comparison to other research (Jegorowa et al. 2020, 

Swidiersky 2022), the performance results reported in this work for the developed deep learning 

models can be regarded as quite good. However, there were no comparable studies involving different 

wood species. Future research in this direction should include more wood species and more types of 

tools to substantiate the results presented in this paper. In addition, there is still room for investigation 

of the tool condition using the applied methodology as well as the sound wave propagation in the 

wood during cutting. 

 

Table 4. Performances of the developed deep learning models for different tool  

condition sound classification. 

 MobileNetV2 VGG19 DenseNet SqueezeNet ResNet Inception_v3 

Accuracy 0.930 0.85 0.9 0.89 0.91 0.87 

Precision 0.921 0.830189 0.857143 0.882352941 0.886792 0.862745 

Recall 0.940 0.88 0.96 0.9 0.94 0.88 

f1 0.930 0.854359 0.90566 0.891089109 0.912621 0.871287 

 

 According to Table 4, deep learning models provided satisfactory results in recognising the tool 

state. The accuracy of tool wear detection varied from 85% for the DenseNet network to 93% for 

MobileNet V2. The values shown in Table 3, especially the accuracy, are slightly lower than the tool 

type detection (97.5%), but can be considered significant as they are caused by small changes in teeth 

geometry. 

 

 5. CONCLUSION 

 

 The methodology presented in this paper offers good prospects for noise detection as a tool for 

monitoring the machining process, leading to smart machining as part of Industry 4.0 and beyond. 

 The right choice of frequency range, signal processing and data preparation, together with the 

application of a neural network, can provide an answer to the machining process, material and tool. 

 In this article, it is shown that the noise generated by the use of a circular saw, whether it is 

interacting with the material or just idling, can provide enough information for process monitoring. 

 After all that has been said before, one could come to the conclusion: 

 - The sound signal investigated in this study proves to be a satisfactory data carrier for this type of 

investigation; 

 - The processing of the sound signal provided quite good information that is consistent with 

certain circular saw blades; 

 - From the average spectral density plots, it was quite clear which spectral regions were of interest 

for training the deep learning network; 

 - The spectrograms provided a sufficiently good basis as data for the deep learning process; 

 - According to the results of the deep learning networks, a validation accuracy of 100, 97.5, 98 

and 93% was achieved, proving that this approach can be used for monitoring cutting processes in 

terms of decision-making; 

 - However, the results presented relate to the particular environmental conditions. No 

reverberation noise was taken into account; 

 - Further research in this area will include the interaction of a tool (circular saw blade) with other, 

more homogeneous materials commonly used in woodworking, with different cutting conditions and 

different degrees of bluntness of the tool. 
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