BIO-BASED ECONOMY CASE STUDIES AT UNIVERSITY OF SOPRON

Dimitrios Tsalagkas, Zoltán Börcsök, Katalin Halász, Levente Csóka, Zoltán Pásztory

ABSTRACT

Forest-based sector plays a significant and inseparable role through transition and implementation of 'bioeconomy', 'bio-based economy', 'circular economy' concepts and strategies. This paper aims to report few bio-based economy case studies conducted at the University of Sorpon, and is divided in three parts. The first part describes the investigation efforts on utilization of bark residues as a raw material for manufacturing of thermal insulation panels. The second part is focused on delignification of agricultural residues through an alkaline-hydrodynamic cavitation, and it examines their exploitation in paper and bioenergy production. Finally, the third part presents studies related to fabrication of nanocellulose films and composites for various purposes.

REFERENCES

Badve, MP., Gogate, PR., Pandit, AB., Csóka, L. (2014). Hydrodynamic cavitation as a novel approach for delignification of wheat straw for paper manufacturing. Ultrasonics Sonochemistry, 21: 162-168.

Baxi, PB., Pandit, AB. (2012): Using cavitation for delignification of wood. Bioresource Technology, 110: 697-700.

Biobased Industries Consortium. (2018): Bioeconomy and the UN sustainable development goals. A view from the Bio-based Industries Consortium – July 2018. https://biconsortium.eu/sites/biconsortium.eu/files/documents/Bioeconomy_and_the_SDGs_July% 202018.pdf.

Bugge, MM., Hansen, T., Klitkou, A. (2016): What is the bioeconomy? A review of the literature. Sustainability, 8: 691-713.

D'Amato, D., Droste, N., Allen, B., Kettunen, M., Lähtinen, K., Korhonen, J., Leskinen, P., Matthies, BD., Toppinen, A. (2017): Green, circular, bio economy: A comparative analysis of sustainability avenues. Journal of Cleaner Production, 168: 716-734.

European Commission. (2011): Bio-based economy in Europe: state of play and future potential Part 2. https://ec.europa.eu/research/consultations/bioeconomy/bio-based-economy-for-europe- part2.pdf.

European Commission. (2013): A new EU Forest Strategy: for forests and the forest-based sector. http://ec.europa.eu/agriculture/forest/strategy/index_en.htm.

European Commission. (2018a): A sustainable Bioeconomy for Europe: Strengthening the connection between economy, society and the environment. https://ec.europa.eu/research/bioeconomy/index.cfm?pg=policy&lib=strategy.

European Commission. (2018b): Guidance on cascading use of biomass with selected good practices examples on woody biomass. https://publications.europa.eu/en/publication-detail/-

/publication/9b823034-ebad-11e8-b690-01aa75ed71a1.

Forest-based Sector Technology Platform (FTP). (2019): Vision 2040 of the European forest based sector. www.forestplatform.org

Halász, K., Hosakun, Y., Csóka, L. (2015): Reducing water vapor permeability of poly(lactic acid) film and bottle through Layer-by-Layer deposition of green-processed cellulose nanocrystals and chitosan. International Journal of Polymer Science, Article ID 954290.

Hilares, RT., dos Santos, JC., Ahmed, MA., Jeon, SH., da Silva, SS., Han, JI. (2016): Hydrodynamic cavitation-assisted alkaline pretreatment as a new approach for sugarcane bagasse biorefineries. Bioresource Technology, 214: 609-614.

Hosakun, W., Hosakun, Y., Dudi , D., Djokovi , V., Csóka, L. (2018): Dependence of mechanica and electrical properties of silver nanocubes impregnated bacterial cellulose-silk fibroin- polyvinyl alcohol films on light exposure. Polymer Testing, 71: 110-114.

Hurmekoski, E., Lovri, M., Lovri, N., Hetemäki, L., Winkel, G. (2019): Frontiers of the forest based bioeconomy – A European Delphi study. Forest Policy and Economics, 102: 86-99.

Kain, G., Barbu, M-C., Hinterreiter, S., Richter, K., Petutschnigg, A. (2013): Using bark as a heat insulation material. Bioresources 8 (3): 3718-3731.

Kain, G. Lienbacher, B., Barbu, M-C., Senck, S., Petutschnigg, A. (2018): Water vapour diffusion resistance of larch (*Larix decidua*) bark insulation panels and application considerations based on numeric modelling. Construction and Building Materials, 164: 308-316.

Khatri, V., Halász, K., Trandafilovi, LV., Dimitrijevi -Brankovi, S., Mohanty, P., Djokovi, V., Csóka, L. (2014): ZnO-modified cellulose fiber sheets for antibody immobilization. Carbohydrate Polymers, 109: 139-147.

Martin, R. E. (1963): Thermal properties of bark. Forest Products Journal, 13(10): 419-426.

Mubareka, S., Jonsson, R., Rinaldi, F., Azevedo, JC., de Rigo, D., Sikkema, R. (2016): Forest bio based economy in Europe. In San-Miguel-Ayanz, J. de Rigo, D., Caudullo, G., Houston Durrant, T. Mauri, A. (Eds), European Atlas of Forest Tree Species, EU, Luxemburg: 20-24.

Nattrass, L., Biggs, C., Bauen, A., Parisi, C., Rodríguez-Cerezo, E., Gómez-Barbero, M. (2016): JRC Technical Reports. The EU bio-based industry: Results from a survey. EUR 27736 EN

Näyhä, A. (2019): Transition in the Finnish forest-based sector: Company perspectives on the bioeconomy, circular economy and sustainability. Journal of Cleaner Production, 209, 1294-1306.

Nechyporchuk, O., Belgacem, M. N., Bras, J. (2016): Production of cellulose nanofibrils: A review of recent advances. Industrial Crops and Products, 93: 2-25.

Pásztory, Z., Mohácsiné, IR., Börcsök, Z. (2017): Investigation of thermal insulation panels made of black locust tree bark. Construction and Building Materials, 147: 733-735.

Patil, PN., Gogate, PR., Csóka, L., Dregelyi-Kiss, A., Horvath, M. (2016): Intensification of biogas production using pretreatment based on hydrodynamic cavitation. Ultrasonics Sonochemistry, 30:79-86.

Pelli, P., Haapala, A., Pykäläinen, J. (2017): Services in the forest-based bioeconomy – analysis of European strategies. Scandinavian Journal of Forest Research, 32 (7): 559-567.

Rodrigues, CIS., Jackson, JJ., Montros, MD. (2016): A molar basis comparison of calcium hydroxide, sodium hydroxide, and potassium hydroxide on the pretreatment of switchgrass and miscanthus under high solids conditions. Industrial Crops and Products, 92: 165-173.

Sabo, R., Yernakov, A., Law, C. T., Elhajjar, R. (2016): Nanocellulose-enabled electronics, energy harvesting devices, smart materials and sensors: A review. Journal of Renewable Materials, 4 (5):297-312.

Scarlat, N., Dallemand, J-F., Monforti-Ferrario, F., Nita, V. (2015): The role of biomass and bioenergy in a future bioeconomy: Policies and facts. Environmental Development, 15: 3-34.

Staffas, L., Gustavsson, M., McCormick, K. (2013): Strategies and policies for the bioeconomy and bio-based economy: An analysis of official national approaches. Sustainability, 5: 2751-2769.

Tsalagkas, D., Laga a, R., Poljanšek, I., Primož, O. (2016): Fabrication of bacterial cellulose thin films self-assemble from sonochemically prepared nanofibrils and its characterization. Ultrasonics Sonochemistry, 28: 136-143.

Vanderghem, C., Brostaux, Y., Jacquet, N., Blecker, C., Paquot, M. (2012): Optimization of formic/acetic acid delignification of *Miscanthus x giganteus* for enzymatic hydrolysis using response surface methodology. Industrial Crops and Products: 280-286.