THE EFFECT OF TIME AND TEMPERATURE OF SATURATED WATER STEAM ON ACIDITY AND WOOD COLOUR IN THE PROCESS OF THERMAL MODIFICATION OF SILVER BIRCH WOOD COLOUR

Ladislav Dzurenda, Michal Dudiak

ABSTRACT

The aim of this paper is to determine the correlation between change in acidity and colour of wood species Betula pendula Rot. in the CIE-L*a*b* colour space in the process of heat treatment of woodturning blanks with dimensions of 40 x 90 x 800 mm, and saturated water steam in the range of temperatures from t=105 to 135 °C, as well as the time of heat treatment from t=3 up to t=3 due to partial hydrolysis of hemicelluloses and extraction of water-soluble substances, and it loses whiteness (gets darker). Increment in the value of the coordinate of the red colour t=3 and slight changes in the coordinate of yellow colour t=3 be at the coordinate of the brown colour. Colour coordinates of birch wood in the CIE L*a*b* colour space with dependence on temperature of saturated water steam t and the time of heat treatment are described using the equations:

 $L^* = 83.6232 + 0.4815 \cdot t - 1.9377 \cdot -0.0041 \cdot t^2 - 0.0068 \cdot t \cdot +0.1091 \cdot ^2,$ $a^* = 6.7847 - 0.0795 \cdot t + 1.2265 \cdot +0.0007 \cdot t^2 - 0.0026 \cdot t \cdot -0.0511 \cdot ^2,$

 $b^* = 19.8107 - 0.0014 \cdot t + 0.7326 \cdot -9.3472E - 5 \cdot t^2 - 0.0027 \cdot t \cdot -0.0255 \cdot t^2 - 0.0027 \cdot t \cdot -0.00255 \cdot t^2 - 0.0027 \cdot t \cdot -0.0025 \cdot -0.0025 \cdot -0.0025 \cdot -0.0027 \cdot t \cdot -0.0025 \cdot -0.00$

REFERENCES

Babiak, M., Kubovský, I., Mamo ová, M. (2004): Color space of selected local woods. In: Interaction of wood with various Forms of Energy. Technical university in Zvolen, Slovakia (in Slovak).

Bara ski, J., Klement, I., Vilkovská, T., Konopka, A. (2017): High Temperature Drying Process of Beech Wood (Fagus sylvatica L.) with Different Zones of Sapwood and Red False Heartwood. In: BioResources 12(1), 1861-1870. DOI:10.15376/biores.12.1.1761-1870.

Barcik, Š., Gašparík, M., Razumov, E.Y. (2015): Effect of thermal modification on the colour changes of oak wood. In: Wood Research. 60 (3):385-396.

Bu ko, J. (1995): Hydrolysis processes. Technical university in Zvolen, Slovakia (in Slovak).

Cividini, R., Travan, L., Allegretti, O. (2007): White beech: A tricky problem in drying process. In: International Scientific Conference on Hardwood processing. September 24-25-26, 2007 Quebec City, Canada.

Deliiski, N. (2003): Modelling and Technologies for Steaming Wood Materials in Autoclaves. Dissertation for DSc., Sofia: University of Forestry, 358 pp.

Deliiski, N., Sokolovski, S. (2007): Autoclaves for Intensive Resource Saving Steaming of Wood Materials. In 2nd International Scientific Conference "Woodworking techniques", Zalesina, Croatia, 2007, p. 19-26.

Deliiski, N., Dzurenda, L. (2010): Modeling of heat processes in wood processing technologies. Avangard Prima, Sofia. Bulgaria (in Bulgarian).

Deliiski, N. (2011): Model Based Automatic Control of the Wood Steaming Process in Autoclaves. In Woodworking techniques, Prague, 7–10 September: 67–72.

Dzurenda, L. (2014): Colouring of Beech Wood during Thermal Treatment using Saturated Water Steams. In: Acta facultatis xylologiae Zvolen, 56 (1):13 – 22.

Dzurenda, L. (2018): The Effect of Moisture Content of Black Locust Wood on the Heating in the Saturated Water Steam during the Process of Colour Modification, In: MATEC Web of Conferences 168, 06004.

Dzurenda, L. (2018): The Shades of Color of Quercus robur L. Wood Obtained through the Processes of Thermal Treatment with Saturated Water Vapor. In: BioResouces 13(1), 1525 - 1533; doi: 10.1063/biores 13.1.1525-1533.

Hadjiski, M., Deliiski, N. (2016): Advanced Control of the Wood Thermal Treatment Processing. In: Cybernetics and Information Technologies. Bulgarian Academy of Sciences 16(2):176-197.

Geffert, A., Výbohová, E., Geffertová, J. (2017): Characterization of the changes of colour and some wood components on the surface of steamed beech wood. In: Acta facultatis xylologiae Zvolen, 59 (1):49 – 57, ISSN 1366-3824, doi: 10.17423/afx.2017.59.1.05. ISO 11 664-4:2008 Colorimetry - Part 4: CIE 1976 L*a*b* Colour space.

Ka ik, F. (2001): Creation and Chemical Composition of Hydrolysates in the Wood-waterheat System. Technical university in Zvolen. Slovakia (in Slovak).

Klement, I., Marko, P. (2009): Colour changes of beech wood (Fagus sylvatica L.) during high temperature drying process. In: Wood research 54 (3): 45-54.

Klement, I., Réh, R., Detvaj, J. (2010): Basic characteristics of forest trees - processing of wood raw material in wood processing industry, National Forest Centre – Zvolen, Slovakia (in Slovak).

Kollmann, F., Gote, W.A. (1968): Principles of Wood Sciences and Technology, Vol. 1. Solid Wood, Springer Verlag: Berlin – Heidelberg - New York.

Laurova, M., Mamonova, M., Ku erova, V. (2004): Process of Partial Hydrolysis of Beech Wood (Fagus sylvatica L.) by Steaming and Cooking. Technical university in Zvolen. Slovakia (in Slovak).

Lawniczak, M. (1995): Outline of hydrothermal and plastic wood processing. Part I. - Steaming and wood brewing. WTD Poznan, Poland (in Polish).

Makovíny, I. (2010): Utility Properties and the Use of Different Types of Wood. Technical university in Zvolen. Slovakia (in Slovak).

Melcer, I., Melcerová, A., Solár, R., Ka ík, F. (1989): Chemistry of hydrothermal treatment of deciduous trees. College of Forestry and Wood Technology in Zvolen, Slovakia (in Slovak).

Molnar, S., Tolvaj, L. (2002): Colour homogenisation of different wood species by steaming. In: Interaction of wood with various Forms of Energy. Technical university in Zvolen, Slovakia (in Slovak).

Nikolov, S., Rajchev, A., Deliiski, N. (1980): Steaming Timber. VLTU Sofia, Bulgaria (in Bulgarian).

Perelygin, L., M. (1965): Wood Science, SVTL, Bratislava. Slovakia (in Slovak).

Samešová, D., Dzurenda, L., Jurkovi , P. (2018): Contamination of water by hydrolysis products and extraction from the thermal treatment of beech and maple timber during modification the color of wood. In: Chip and Chipless Woodworking Processes 2018. 11(1): 277–282. Slovakia (in Slovak).

Sergovskij, P. S., Rasev, A. I. (1987): Hydrothermal Treatment and Conservation of Wood. Lesnaja promyšlennost, Moskva, Russia (in Russian)

Tolvaj, L., Nemeth, R., Varga, D., Molnar, S. (2009). Colour homogenisation of beech wood by steam treatment. In: Drewno. 52 (181): 5-17.

Trebula, P. (1996). Drying and Hydrothermal Treatment of Wood. Technical university in Zvolen, Slovakia (in Slovak).