MODELLING OF ENERGY CONSUMPTION NEEDED FOR MELTING FROZEN BOUND WATER IN WOOD CHIPS

Nencho Deliiski, Veselin Brezin, Anton Geffert, Jarmila Geffertova, Natalia Tumbarkova

ABSTRACT

A mathematical model and an engineering approach for calculation of the specific mass energy consumption, which is needed for melting frozen bound water in wood chips above the hydroscopic diapason, $q_{\text{hym}}^{\text{m/t}}$, have been suggested.

An equation for easy calculation of $q_{bwm}^{m/t}$ has been derived, depending on the wood moisture content u, on the fiber saturation point at 20 °C (i.e. at 293.15 K), $u_{fsp}^{293.15}$, and on the initial temperature T_0 of the frozen chips. According to this equation, the values of $q_{bwm}^{m/t}$ increase with increase of $u_{fsp}^{293.15}$ and of the difference $271.15 - T_0$, then they decrease when u or T_0 increase. For calculation of the $q_{bwm}^{m/t}$ according to the suggested model, a software program has been prepared in MS Excel 2010. By means of this program, calculations have been carried out to determine $q_{bwm}^{m/t}$ for oak, acacia, beech, and poplar frozen chips with moisture content in the range from $u = 0.4 \text{ kg} \cdot \text{kg}^{-1}$ to $u = 1.0 \text{ kg} \cdot \text{kg}^{-1}$ and at a temperature range from $t_0 = -40$ °C to $t_0 = -2$ °C. At $t_0 = -2$ °C the melting of frozen bound water in wood chips has been completed.

REFERENCES

Chudinov, B. S. (1966): Theoretical Research of Thermo-physical Properties and Thermal Treatment of Wood. Dissertation for DSc., SibLTI, Krasnoyarsk, USSR (in Russian).

Chudinov, B. S. (1968): Theory of Thermal Treatment of Wood. Publishing Company "Nauka", Moscow, USSR (in Russian).

Deliiski, N. (2003): Modelling and Technologies for Steaming Wood Materials in Autoclaves. Dissertation for DSc., University of Forestry, Sofia (in Bulgarian).

Deliiski, N. (2011): Transient Heat Conduction in Capillary Porous Bodies, p.149-176. In: Convection and Conduction Heat Transfer. InTech Publishing House, Rieka, http://dx.doi.org/10.5772/21424.

Deliiski, N. (2013a): Modelling of the Energy Needed for Heating of Capillary Porous Bodies in Frozen and Non-frozen States. ISBN 978-3-639-70036-7, Lambert Academic Publishing, Scholars'Press,Saarbruecken,Germany,116p.http://www.scholarspress.com//system/covergenerator/build/10 60.

Deliiski, N. (2013b): Modelling of the Energy Needed for Melting the Ice in Frozen Wood Above the Hygroscopic Diapason. Wood Design and Technology, Vol.2, No.1, p.42-52, Ss.Cyril and Methodius University – Skopje, ISSN 1857-8381.

Deliiski, N., Dzurenda, L. (2010): Modelling of the Thermal Processes in the Technologies for Wood Thermal Treatment. TU Zvolen, Slovakia (in Russian).

Hadjiiski, M. (2003): Mathematical Models in Advanced Technological Control Systems. Automatic & Informatics, 37 (3): 7-12 (in Bulgarian).

Nikolov, S., Videlov, H. (1987): Handbook for Wood Drying. Publishing Company "Zemizdat", Sofia (in Bulgarian).

Stamm, A. J. (1964): Wood and cellulose science. Ronald Press, New York, 549 pp.

Videlov, H. (2003): Drying and Thermal Treatment of Wood. University of Forestry, Sofia, ISBN 954-8783-63-0, Sofia, (in Bulgarian).

Yosifov, N. (1989): Theoretic-experimental Investigations on the Structural Charac-teristic and Prognostication of the Quality Indices of Particleboards. Dissertation for DSc., University of Forestry, Sofia (in Bulgarian).

Yosifov, N. (2005): Briquettes and Pellets from Plant Biomass. University "St. Kliment Ohridski", Sofia (in Bulgarian).